Performance analysis of electrochemical micromachining using simple additive weighting, criteria importance through intercriteria correlation and artificial neural network methods

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ240220020P

Keywords:

Mixed electrolyte, sodium nitrate, nitric acid, duty cycle, optimization, overcut

Abstract

Electrochemical micromachining (ECMM) finds application in various industries especially in surface finishing process in aerospace industries. In this research the workpiece made from aluminum scrap metal matrix reinforced with alumina is subjected to wear, surface profile and machinability studies. To analysis the ECMM performance simple additive weighting (SAW) CRiteria Importance Through Intercriteria Correlation (CRITIC) and Artificial Neural Network (ANN) was used. The wear studies show that at high loads the height wear loss is less and frictional force is more. The L18 mixed orthogonal array experiments was conducted and analysis of experiments shows that the most crucial parameter values for high MRR and low OC are 28g/lit NaNO3+0.05M HNO3, 10 V, and 80% duty cycle. The weight values of the performance metrics obtained using SAW method are 0.549 and 0.45. The optimal output performance predicted by ANN is MRR of 0.520 µm/sec and OC of 23.8 µm.

References

T.Masuzawa,CIRP Ann. 49(2000) 473-488.https://doi.org/10.1016/S0007-8506(07)63451-9.

S.K. Ganesan, T. Rajasekaran, J. Mech. Eng. 67(2021) 525-533.https://doi.org/10.5545/sv-jme.2021.7246

N. Sivashankar, R. Thanigaivelan, K.G. Saravanan, Bull. Chem. Soc. Ethiop.37(2023)1263-1273.https://doi.org/10.4314/bcse.v37i5.17

D. Goswami, S. Chakraborty, Int. J. Ind. Eng. 5(2014) 41-54.http://dx.doi.org/%2010.5267/j.ijiec.2013.08.003

T. Geethapriyan, K. Kalaichelvan, T. Muthuramalingam,Metall. Ital. 4(2016)13-19.https://www.aimnet.it/la_metallurgia_italiana/2016/aprile/Muthuramalingam.pdf

J. Prakash, S. Gopalakannan,Silicon13 (2021) 409-432.https:// doi.org/ 10.1007/ s12633-020-00434-0

N. Rajan, M.N.S. Sri, P. Anusha, R. Thanigaivelan, S. Vijayakumar,Surf. Eng. Appl. Electrochem.59(2023) 719-727.https://doi.org/10.3103/S1068375523060157.

C. Senthilkumar, G. Ganesan, R. Karthikeyan,Nonferrous Met. Soc. 21(2011) 2294-2300.https://doi.org/10.1016/S1003-6326(11)61010-8

S. Chandrasekhar, N.B.V. Prasad,Proc. Inst. Mech. Eng., Part B234(2020) 1311-1322.https://doi.org/10.1177/0954405420911539.

V. Nagarajan, A. Solaiyappan, S.K. Mahalingam, L. Nagarajan, S. Salunkhe, E.A Nasr, H. M.A.M. Hussein, Appl. Sci.12(2022) 2793.https://doi.org/10.3390/app12062793.

P. Venugopal, T.G. Arul, R. Thanigaivelan, Ionics 28 (2022) 4745-4753.https://doi.org/10.1007/s11581-022-04686-1.

S. Maniraj, R. Thanigaivelan, K. Gunasekaran, K.G. Saravanan, Adv. Mater. Sci. Eng. 2023 (2023) 1366857.https://doi.org/10.1155/2023/1366857

R.Manivannan, T.Niranjan, S.Maniraj, R.Thanigaivelan,J-New-Mat-Electr-Sys, 27(1) (2024) 25-29.https://doi.org/ 10.14447/jnmes.v27i1.a04.

S Kaliappan, P Pravin, KG Saravanan, Rajasekaran Thanigaivelan, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 28(2) (2024) 33-43.https://doi.org/ 10.1615/HighTempMatProc.2023048114.

N Rajan, M Naga Swapna Sri, P Anusha, R Thanigaivelan, S Vijayakumar, Surf. Engin.Appl.Electrochem. 59(2023) 719–727. https://doi.org/10.3103/S1068375523060157.

R. Thanigaivelan, R.M. Arunachalam, B. Karthikeyan, P. Loganathan, Procedia CIRP 6 (2013) 351-355.https://doi.org/10.1016/j.procir.2013.03.011

H. Taherdoost,J. Manage. Sci.6 (2023)21-24.https://doi.org/10.30564/jmser.v6i1.5400

D. Diakoulaki, G. Mavrotas, L. Papayannakis,Comput. Oper. Res. 22(1995) 763-770.https://doi.org/10.1016/0305-0548(94)00059-H

C.W. Churchman, R.L.Ackoff, J. Oper. Res. Soc. Am.2(1954)172-187.https://doi.org/10.1287/opre.2.2.172

S. Kunar, S. Karumuri, I.Veeranjaneyulu, G. Belachew, S.R. Medapati, Key Eng. Mater. 933 (2022) 107–115.https://doi.org/10.4028/p-6x55wh

S. Karumuri, B. Haldar, A. Pradeep, S.A.K. Karanam, M.N.S. Sri, P. Anusha,S. Vijayakumar,Int. J. Interact. Des.Manuf. (2023)https://doi.org/10.1007/s12008-023-01529-9.

K. G. Saravanan, R. Prabu, A. R. Venkataramanan and Eden Tekle Beyessa, Advances in Materials Science and Engineering, 2021, http://dx.doi.org/10.1155/2021/1432300.

V. Palaniswamy, K. Seeniappan, T. Rajasekaran, N.Lakshmaiya, Chem. Ind. Chem. Eng. Q. 29(2023) 201-208.https://doi.org/10.2298/CICEQ220731027P

B.W.Min, J. Internet Things Convergence9(2023) 93-98.http://doi.org/10.20465/KIOTS.2023.9.3.061

S. Bellubbi, B. Mallick, A.S Hameed, P. Dutta, M.K. Sarkar, S.J.Nanjundaswamy,Adv. Manuf. 21(2022) 869-897.https://doi.org/10.1142/S0219686722500330

S.K. Tamang, P.D. Singh, B. Datta, J. Environ. Sci.6 (2020) 53-64.https://doi.org/10.22034/GJESM.2019.06.SI.06

M. Chandrasekaran, S. Tamang,J. Inst. Eng. (India): Ser. C98 (2017) 395-401.https://doi.org/10.1007/s40032-016-0276-3

Downloads

Published

31.05.2024

Issue

Section

Articles

How to Cite

Performance analysis of electrochemical micromachining using simple additive weighting, criteria importance through intercriteria correlation and artificial neural network methods : Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240220020P

Similar Articles

51-60 of 65

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)