THE RELATIONSHIP BETWEEN ERGOSTEROL AND ALTERNARIA MYCOTOXINS IN TOMATOES WITH DIFFERENT SURFACE DECAYED PROPORTIONS

Original scientific paper

Authors

  • Çetin Kadakal Department of Food Engineering, Faculty of Engineering, University of Pamukkale, 20160 Kinikli-Denizli, Turkey https://orcid.org/0000-0002-6608-3887
  • Bilge Akdeniz Department of Food Engineering, Faculty of Engineering, University of Afyon Kocatepe, 03204, Erenler-Afyonkarahisar, Turkey https://orcid.org/0000-0003-2912-451X
  • Ayten Ekinci Vocational School of Technical Sciences, University of Pamukkale, 20160 Kinikli-Denizli, Turkey
  • Luziana Hoxha Agricultural University of Tirana, Faculty of Biotechnology and Food, Str. Pajsi Vodica, Koder Kamez, 1029, Tirana, Albania https://orcid.org/0000-0002-8725-5991
  • Pınar Şengün Department of Food Engineering, Faculty of Engineering, University of Pamukkale, 20160 Kinikli-Denizli, Turkey https://orcid.org/0000-0002-1801-721X

DOI:

https://doi.org/10.2298/CICEQ230627019K

Keywords:

alternariol, alternariol monomethyl ether, decay, ergosterol, tenuazonic acid, tomatoes

Abstract

This study evaluates the relationship between ergosterol (ERG) and Alternaria mycotoxins (AOH, AME, TenA) concentrations in tomato samples with varying decay levels. Using Rio Grande tomatoes, decay levels ranged from 89% to 99%. Samples were categorized based on visible mold, processed into pulp, and evaluated for quality parameters such as soluble solids, pH, acidity, and color. HPLC determined ERG, TenA, AOH, and AME levels, providing data on standard curve linearity, detection limit, recovery, and precision. Correlations between decay proportions and toxin concentrations were analyzed to understand variable relationships and quality implications for the tomato industry. Results indicate significant (p<0.05) effects of decay levels on toxin concentrations, emphasizing the importance of these measures for tomato quality assessment. The strong correlations among parameters underscore their relevance for quality control in tomato processing. This study contributes valuable insights for future research in this domain.

References

[1] S. Dagnas, J.M Membré, J. Food Prot. 76(3) (2013) 538—551. https://doi.org/10.4315/0362-028X.JFP-12-349.

[2] J.L. Richard, Int. J. Food Microbiol. 119(1—2) (2007) 3—10.

https://doi.org/10.1016/j.ijfoodmicro.2007.07.019

[3] R. Barkai-Golan, in Mycotoxins in fruits and vegetables, R. Barkai-Golan, N. Paster Ed., Elsevier Inc, Amsterdam (2008) 185—204. https://doi.org/10.1016/B978-0-12-374126-4.X0001-0.

[4] R.A. Marc, in Mycotoxins and Food Safety-Recent Advances, R.A. Marci Ed., IntechOpen, Romania (2022) p. 149. https://doi.org/10.5772/intechopen.95720.

[5] J.I Pitt, M.H. Taniwaki, M.B. Cole, Food Control, 32(1) (2013) 205—215. https://doi.org/10.1016/j.foodcont.2012.11.023.

[6] S.D. Motta, L.M. Valente-Soares, Food Addit. Contam. 18(7) (2001) 630—634. https://doi.org/10.1080/02652030117707.

[7] V.E.F. Pinto, A. Patriarca, in Mycotoxigenic Fungi: Methods and Protocols, M. Antonio, S. Antonio Ed., Humana Press, New Jersey (2017) p. 394. https://doi.org/10.1007/978-1-4939-6707-0_1.

[8] EFSA, EFSA on Contaminants in the Food Chain, EFSA J. 9 (10) (2011) 2407. https://doi.org/10.2903/j.efsa.2011.2407.

[9] L.S. Jackson, F. Al-Taher, in Mycotoxins in fruits and vegetables, R. Barkai-Golan, N. Paster Ed., Elsevier Inc. Amsterdam (2008) 75—104. https://doi.org/10.1016/B978-0-12-374126-4.X0001-0.

[10] L. Escrivá, S. Oueslati, G. Font, L. Manyes, J. Food Qual. 32(1) (2017) 205—215. https://doi.org/10.1016/j.foodcont.2012.11.023.

[11] M. Solfrizzo, Curr. Opin. Food Sci. 17 (2017) 57—61. https://doi.org/10.1016/j.cofs.2017.09.012.

[12] Y. Ackermann, V. Curtui, R. Dietrich, M. Gross, H. Latif, E. Märtlbauer, E. Usleber, J. Agric. Food Chem. 59(12) (2011) 6360—6368. https://doi.org/10.1021/jf201516f.

[13] J. Noser, P. Schneider, M. Rother, H. Schmutz, Mycotoxin Res. 27(4) (2011) 265—271. https://doi.org/10.1007/s12550-011-0103-x.

[14] N. Jiand, Z. Li, L. Wang, H. Li, X. Zhu, X. Feng, M. Wang, Int. J. Food. Microbiol. 311 (2019) 108333. https://doi.org/10.1016/j.ijfoodmicro.2019.108333.

[15] V. Ostry, World Mycotoxin J. 1(2) (2008) 175—188. https://doi.org/10.3920/WMJ2008.x013.

[16] C. Juan, L. Covarelli, G. Beccari, V. Colasante, J. Mañes, Food Control, 62 (2016) 322—329. https://doi.org/10.1016/j.foodcont.2015.10.032.

[17] K. Sivagnanam, E. Komatsu, C. Rampitsch, H. Perreault, T. Gräfenhan, J. Sci. Food Agric. 97(1) (2017) 357—361. https://doi.org/10.1002/jsfa.7703.

[18] M. Zachariasova, Z. Dzuman, Z. Veprikova, K. Hojkova, M. Jiru, M. Vaclavikova, A. Zachariasova, M. Pospichalova, M. Florian, J. Hajslova, Anim. Feed Sci. Technol. 193 (2014) 124—140. https://doi.org/10.1016/j.anifeedsci.2014.02.007.

[19] W. Jia, X. Chu, Y. Ling, J. Huang, J. Chang, J. Chromatogr. A. 1345 (2014) 107—114. https://doi.org/10.1016/j.chroma.2014.04.021.

[20] W.A. Abia, B. Warth, M. Sulyok, R. Kriska, A.N. Tchana, P.B. Njobeh, M.F. Dutton, P.F. Moundipa, Food Control, 31(2) (2013) 438—453. https://doi.org/10.1016/j.foodcont.2012.10.006.

[21] P. López, D. Venema, T. Rijk, A. Kok, J.M. Scholten, H.G.J. Mol, M. Nijs, Food Control, 60 (2016) 196—204. https://doi.org/10.1016/j.foodcont.2015.07.032.

[22] S. Hickert, M. Bergmann, S. Ersen, B. Cramer, H.U. Humpf, Mycotoxin Res. 32(1) (2016) 7—18. https://doi.org/10.1007/s12550-015-0233-7.

[23] V.M. Scussel, J.M. Scholten, P.M. Rensen, M.C. Spanjer, B.N.E. Giordano, G.D. Savi, Int. J. Food Sci. Technol. 48(1) (2013) 96—102. https://doi.org/10.1111/j.1365-2621.2012.03163.x.

[24] A. Logrieco, A. Moretti, M. Solfrizzo, World Mycotoxin J. 2(2) (2009) 129—140. https://doi.org/10.3920/WMJ2009.1145.

[25] M. Meena, A. Zehra, P. Swapnil, M.K. Dubey, C.B. Patel, R.S. Upadhyay, Arch. Phytopathol. Plant Prot. 50(7—8) (2017) 317—329. https://doi.org/10.1080/03235408.2017.1312769.

[26] N.M. Nizamlıoğlu, J. Food Process. Preserv. 46 (11) (2022) e16937. https://doi.org/10.1111/jfpp.16937.

[27] M. Eskola, A. Altieri, J.J.W.M.J. Galobart, World Mycotoxin J. 11(2) (2018) 277—289. https://doi.org/10.3920/WMJ2017.2270.

[28] Ç. Kadakal, T.K. Tepe, Food Rev. Int. 35 (2) (2019) 155—165. https://doi.org/10.1080/87559129.2018.1482495.

[29] R. Ekinci, Ç. Kadakal, M. Otağ, J. Food Prot. 77 (3) (2014) 499—503. https://doi.org/10.4315/0362-028X.JFP-13-215.

[30] Ç. Kadakal, PhD Thesis, Ankara University, Institute of Science, Ankara, (2003) Turkey.

[31] Ç. Kadakal, N. Artık, Crit. Rev. Food Sci. Nutr. 44 (5) (2004) 349—351. https://doi.org/10.1080/10408690490489233.

[32] Ç. Kadakal, S. Nas, R. Ekinci, Food Chem. 90 (2005) 95—100. https://doi.org/10.1016/j.foodchem.2004.03.030.

[33] S. Marin, D. Cuevas, A.J. Ramos, V. Sanchis, Int. J. Food Microbiol. 121 (2008) 139—149. https://doi.org/10.1016/j.ijfoodmicro.2007.08.030.

[34] M.H. Taniwaki, A.D. Hocking, J.I. Pitt, G.H. Fleet, Int. J. Food Microbiol. 68 (2001) 125—133. https://doi.org/10.1016/S0168-1605(01)00487-1.

[35] S. Bermingham, L. Maltby, R.C. Cooke, Mycol. Res. 99 (1995) 479—484. https://doi.org/10.1016/S0953-7562(09)80650-3.

[36] H. Gourama, L.B. Bullerman, J. Food Prot. 558 12 (1995) 1395—1404. https://doi.org/10.4315/0362-028X-58.12.1395.

[37] Ç. Kadakal, S. Nas, R. Ekinci, Food Chem. 90 (2005) 95—100. https://doi.org/10.1016/j.foodchem.2004.03.030.

[38] Ç. Kadakal, M.N. Nizamlıoğlu, T.K. Tepe, S. Arısoy, B. Tepe. H.S. Batu, Turk. J. Agric. Food Sci. Tech. 8 (4) (2020). https://doi.org/10.24925/turjaf.v8i4.895-900.3071.

[39] M.R. Zill, J.E. Ehgelhardt, P.R. Wallnofer, Zeitschrift fur Lebensmittel-untersuchung und -forschung, 15 (1988) 20—22. https://doi.org/10.1007/bf01043094.

[40] Ç. Kadakal, Ş. Taği, N. Artık, J. Food Qual. 27 (4) (2004) 255—263. https://doi.org/10.1111/j.1745-4557.2004.00631.x.

[41] AOAC, Methods, Assoc. Off. Anal. Chem, 15th Ed., Arlington (1990) p. 910. ISBN 0-935584-40.

https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf.

[42] L.J. Mauer, R.L. Bradley, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 257—286. https://doi.org/10.1007/978-3-319-45776-5_15.

[43] C. Tyl, G.D. Sadler, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 389—406. https://doi.org/10.1007/978-3-319-45776-5_22.

[44] R.E. Wrolstad, D.E. Smith, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 545—555. https://doi.org/10.1007/978-3-319-45776-5_31.

[45] L. Terminiello, A. Patriarca, G. Pose, V.F. Pinto, Mycol. Res. 22 (4) (2006) 236—240. https://doi.org/10.1007/BF02946748.

[46] H.A. Hasan, Acta Microbiol. Immunol. Hung. 43 (2—3) (1996) 125—133. https://doi.org/10.1007/BF01103101.

[47] J. Walravens, H. Mikula, M. Rychlik, S. Asam, T. Devos, E.E. Njumbe, D.D. Mavungu, J. Jacxsens, L. Van, A. Landschoot, L. Vanhaecke, S. Saeger, J. Agric. Food Chem. 64(24) (2016) 5101—5109. https://doi.org/10.1021/acs.jafc.6b01029.

[48] E. Fliszár-Nyúl, Á. Szabó, L. Szente, M. Poór, J. Mol. Liq. 319 (2020) 114180. https://doi.org/10.1016/j.molliq.2020.114180.

[49] J.D. Ioi, PhD Thesis, The University of Guelph, Department of Food Science, Ontario, (2017) Canada.

[50] S.D. Motta, L.M.V. Soares, Braz. J. Microbiol. 31(4) (2000) 315—320. https://doi.org/10.1590/S1517-83822000000400015.

[51] C. Graselli, C. Leoni, C. Sandei, G. Mori, Ind. Conserve, 68 (1993) 1—10. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4859569.

Downloads

Published

27.05.2024 — Updated on 09.04.2025

Issue

Section

Articles

How to Cite

THE RELATIONSHIP BETWEEN ERGOSTEROL AND ALTERNARIA MYCOTOXINS IN TOMATOES WITH DIFFERENT SURFACE DECAYED PROPORTIONS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(2), 113-121. https://doi.org/10.2298/CICEQ230627019K

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.