The relationship between ergosterol and alternaria mycotoxins in tomatoes with different surface decayed proportions Original scientific paper

Main Article Content

Çetin Kadakal
https://orcid.org/0000-0002-6608-3887
Bilge Akdeniz
https://orcid.org/0000-0003-2912-451X
Ayten Ekinci
Luziana Hoxha
https://orcid.org/0000-0002-8725-5991
Pınar Şengün
https://orcid.org/0000-0002-1801-721X

Abstract

The aim of this study is to evaluate the relationships between the concentrations of ergosterol (ERG) and Alternaria mycotoxins (alternariol (AOH), alternariol monomethyl-ether (AME) and tenuazonic acid (TenA)) concentrations in tomato pulp and pomace samples, with different proportions (%) of decay in tomato surface. To evaluate such relationships is used a range of 89 to 99 percent of decayed tomato surface. For this study, is used the Rio Grande variety, one of Turkey's most common industrial type tomato varieties, for tomato paste production. Tomatoes were classified in percentage as 25, 50, 75, and 100 % rotting rate, based on visibly rotten by molds on their surface, before processing to tomato pulp. Some quality parameters of tomato pulp and pomace samples determined were: the soluble solids by refractive index measurements, pH, titratable acidity with the titrimetric method, and expressed as citric acid g/L, the color as reflectance with a chroma-meter, for three color components L*, a*, b*. To determine ERG, TenA, AOH, and AME in the samples was used the HPLC method, and for the proposed method are provided data on the linearity of the standard curve, limit of detection, recovery, and precision. Also, the correlations and significance levels between the tomato surface decay proportions, and the ergosterol and the Alternaria mycotoxins concentrations are evaluated, to examine the relationships status between variables, and to determine how the other variable explains many variations within one variable. The results revealed that the concentrations of ergosterol and Alternaria mycotoxins in tomato pulp and pomace were significantly (p<0.05) affected by different proportions of decayed tomatoes surface. The high correlations that exist among evaluated parameters, suggest strongly that such measurements are very important to determine the quality of tomato. Moreover, such evaluations could be considered important indicators to tomato processing industry, concerned to the quality defects. The results of this study may serve as new data for future follow-up studies in this field.

Article Details

How to Cite
Kadakal, Çetin ., Akdeniz, B. ., Ekinci, A. ., Hoxha, L. ., & Şengün, P. . (2024). The relationship between ergosterol and alternaria mycotoxins in tomatoes with different surface decayed proportions: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ230627019K
Section
Articles

References

S. Dagnas, J.M Membré, J. Food Prot. 76(3) (2013) 538-551. https://doi.org/10.4315/0362-028X.JFP-12-349

J.L. Richard, Int. J. Food Microbiol. 119(1-2) (2007) 3-10. https://doi.org/10.1016/j.ijfoodmicro.2007.07.019

R. Barkai-Golan, in Mycotoxins in fruits and vegetables, R. Barkai-Golan, N. Paster Ed., Elsevier Inc, Amsterdam (2008) 185-204. https://doi.org/10.1016/B978-0-12-374126-4.X0001-0

R.A. Marc, in Mycotoxins and Food Safety-Recent Advances, R.A. Marci Ed., IntechOpen, Romania (2022) p. 149. https://doi.org/10.5772/intechopen.95720

J.I Pitt, M.H. Taniwaki, M.B. Cole, Food Control, 32(1) (2013) 205-215. https://doi.org/10.1016/j.foodcont.2012.11.023

S.D. Motta, L.M. Valente-Soares, Food Addit. Contam. 18(7) (2001) 630-634. https://doi.org/10.1080/02652030117707

V.E.F. Pinto, A. Patriarca, in Mycotoxigenic Fungi: Methods and Protocols, M. Antonio, S. Antonio Ed., Humana Press, New Jersey (2017) p. 394. https://doi.org/10.1007/978-1-4939-6707-0_1

EFSA, EFSA on Contaminants in the Food Chain, EFSA J. 9 (10) (2011) 2407. https://doi.org/10.2903/j.efsa.2011.2407.

L.S. Jackson, F. Al-Taher, in Mycotoxins in fruits and vegetables, R. Barkai-Golan, N. Paster Ed., Elsevier Inc. Amsterdam (2008) 75-104. https://doi.org/10.1016/B978-0-12-374126-4.X0001-0.

L. Escrivá, S. Oueslati, G. Font, L. Manyes, J. Food Qual. 32(1) (2017) 205-215. https://doi.org/10.1016/j.foodcont.2012.11.023

M. Solfrizzo, Curr. Opin. Food Sci. 17 (2017) 57-61. https://doi.org/10.1016/j.cofs.2017.09.012

Y. Ackermann, V. Curtui, R. Dietrich, M. Gross, H. Latif, E. Märtlbauer, E. Usleber, J. Agric. Food Chem. 59(12) (2011) 6360-6368. https://doi.org/10.1021/jf201516f

J. Noser, P. Schneider, M. Rother, H. Schmutz, Mycotoxin Res. 27(4) (2011) 265-271. https://doi.org/10.1007/s12550-011-0103-x

N. Jiand, Z. Li, L. Wang, H. Li, X. Zhu, X. Feng, M. Wang, Int. J. Food. Microbiol. 311 (2019) 108333. https://doi.org/10.1016/j.ijfoodmicro.2019.108333

V. Ostry, World Mycotoxin J. 1(2) (2008) 175-188. https://doi.org/10.3920/WMJ2008.x013

C. Juan, L. Covarelli, G. Beccari, V. Colasante, J. Mañes, Food Control, 62 (2016) 322-329. https://doi.org/10.1016/j.foodcont.2015.10.032

K. Sivagnanam, E. Komatsu, C. Rampitsch, H. Perreault, T. Gräfenhan, J. Sci. Food Agric. 97(1) (2017) 357-361. https://doi.org/10.1002/jsfa.7703

M. Zachariasova, Z. Dzuman, Z. Veprikova, K. Hojkova, M. Jiru, M. Vaclavikova, A. Zachariasova, M. Pospichalova, M. Florian, J. Hajslova, Anim. Feed Sci. Technol. 193 (2014) 124-140. https://doi.org/10.1016/j.anifeedsci.2014.02.007

W. Jia, X. Chu, Y. Ling, J. Huang, J. Chang, J. Chromatogr. A. 1345 (2014) 107-114. https://doi.org/10.1016/j.chroma.2014.04.021

W. A. Abia, B. Warth, M. Sulyok, R. Kriska, A.N. Tchana, P.B. Njobeh, M.F. Dutton, P.F. Moundipa, Food Control, 31(2) (2013) 438-453. https://doi.org/10.1016/j.foodcont.2012.10.006

P. López, D. Venema, T. Rijk, A. Kok, J.M. Scholten, H.G.J. Mol, M. Nijs, Food Control, 60 (2016) 196-204. https://doi.org/10.1016/j.foodcont.2015.07.032

S. Hickert, M. Bergmann, S. Ersen, B. Cramer, H.U. Humpf, Mycotoxin Res. 32(1) (2016) 7-18. https://doi.org/10.1007/s12550-015-0233-7

V.M. Scussel, J.M. Scholten, P.M. Rensen, M.C. Spanjer, B.N.E. Giordano, G.D. Savi, Int. J. Food Sci. Technol. 48(1) (2013) 96-102. https://doi.org/10.1111/j.1365-2621.2012.03163.x

A. Logrieco, A. Moretti, M. Solfrizzo, World Mycotoxin J. 2(2) (2009) 129-140. https://doi.org/10.3920/WMJ2009.1145

M. Meena, A. Zehra, P. Swapnil, M.K. Dubey, C.B. Patel, R.S. Upadhyay, Arch. Phytopathol. Plant Prot. 50(7-8) (2017) 317-329. https://doi.org/10.1080/03235408.2017.1312769

N.M. Nizamlıoğlu, J. Food Process. Preserv. 46 (11) (2022) e16937. https://doi.org/10.1111/jfpp.16937

M. Eskola, A. Altieri, J.J.W.M.J. Galobart, World Mycotoxin J. 11(2) (2018) 277-289. https://doi.org/10.3920/WMJ2017.2270

Ç. Kadakal, T.K. Tepe, Food Rev. Int. 35 (2) (2019) 155-165. https://doi.org/10.1080/87559129.2018.1482495

R. Ekinci, Ç. Kadakal, M. Otağ, J. Food Prot. 77 (3) (2014) 499-503. https://doi.org/10.4315/0362-028X.JFP-13-215

Ç. Kadakal, PhD Thesis, Ankara University, Institute of Science, Ankara, (2003) Turkey.

Ç. Kadakal, N. Artık, Crit. Rev. Food Sci. Nutr. 44 (5) (2004) 349-351. https://doi.org/10.1080/10408690490489233

Ç. Kadakal, S. Nas, R. Ekinci, Food Chem. 90 (2005) 95-100. https://doi.org/10.1016/j.foodchem.2004.03.030

S. Marin, D. Cuevas, A.J. Ramos, V. Sanchis, Int. J. Food Microbiol. 121 (2008) 139-149. https://doi.org/10.1016/j.ijfoodmicro.2007.08.030

M.H. Taniwaki, A.D. Hocking, J.I. Pitt, G.H. Fleet, Int. J. Food Microbiol. 68 (2001) 125-133. https://doi.org/10.1016/S0168-1605(01)00487-1

S. Bermingham, L. Maltby, R.C. Cooke, Mycol. Res. 99 (1995) 479-484. https://doi.org/10.1016/S0953-7562(09)80650-3

H. Gourama, L.B. Bullerman, J. Food Prot. 558 12 (1995) 1395–1404. https://doi.org/10.4315/0362-028X-58.12.1395.

Ç. Kadakal, S. Nas, R. Ekinci, Food Chem. 90 (2005) 95-100. https://doi.org/10.1016/j.foodchem.2004.03.030

Ç. Kadakal, M.N. Nizamlıoğlu, T.K. Tepe, S. Arısoy, B. Tepe. H.S. Batu, Turk. J. Agric. Food Sci. Tech. 8 (4) (2020). https://doi.org/10.24925/turjaf.v8i4.895-900.3071

M.R. Zill, J.E. Ehgelhardt, P.R. Wallnofer, Zeitschrift fur Lebensmittel-untersuchung und -forschung, 15 (1988) 20-22. https://doi.org/10.1007/bf01043094

Ç. Kadakal, Ş. Taği, N. Artık, J. Food Qual. 27 (4) (2004) 255-263. https://doi.org/10.1111/j.1745-4557.2004.00631.x

AOAC, Methods, Assoc. Off. Anal. Chem, 15th Ed., Arlington (1990) p. 910. ISBN 0-935584-40. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

L.J. Mauer, R.L. Bradley, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 257-286. https://doi.org/10.1007/978-3-319-45776-5_15

C. Tyl, G.D. Sadler, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 389-406. https://doi.org/10.1007/978-3-319-45776-5_22

R.E. Wrolstad, D.E. Smith, in Food Analysis, S.S. Nielsen Ed., Springer, New York (2017) 545-555. https://doi.org/10.1007/978-3-319-45776-5_31

L. Terminiello, A. Patriarca, G. Pose, V.F. Pinto, Mycol. Res. 22 (4) (2006) 236-240. https://doi.org/10.1007/BF02946748

H.A. Hasan, Acta Microbiol. Immunol. Hung. 43 (2-3) (1996) 125-133. https://doi.org/10.1007/BF01103101

J. Walravens, H. Mikula, M. Rychlik, S. Asam, T. Devos, E.E. Njumbe, D.D. Mavungu, J. Jacxsens, L. Van, A. Landschoot, L. Vanhaecke, S. Saeger, J. Agric. Food Chem. 64(24) (2016) 5101-5109. https://doi.org/10.1021/acs.jafc.6b01029

E. Fliszár-Nyúl, Á. Szabó, L. Szente, M. Poór, J. Mol. Liq. 319 (2020) 114180. https://doi.org/10.1016/j.molliq.2020.114180

J.D. Ioi, PhD Thesis, The University of Guelph, Department of Food Science, Ontario, (2017) Canada.

S.D. Motta, L.M.V. Soares, Braz. J. Microbiol. 31(4) (2000) 315-320. https://doi.org/10.1590/S1517-83822000000400015

C. Graselli, C. Leoni, C. Sandei, G. Mori, Ind. Conserve, 68 (1993) 1-10. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4859569