INFLUENCE OF ACTIVATORS ON SPENT COFFEE GROUNDS AS BIOSORBENT FOR CHROMIUM

Original scientific paper

Authors

  • Ayuni Yustira Department of Chemical Engineering, Faculty of Engineering Universitas Sumatera Utara Medan 20155, Indonesia https://orcid.org/0009-0008-2119-2482
  • Hafifuddin Arif Department of Chemical Engineering, Faculty of Engineering Universitas Sumatera Utara Medan 20155, Indonesia https://orcid.org/0009-0004-9426-1777
  • Zahedi Zahedi Department of Mathematics, Faculty of Mathematics and Natural Sciences Universitas Sumatera Utara Medan 20155, Indonesia https://orcid.org/0000-0002-5579-7024
  • Fachrur Razi Department of Civil Engineering, Faculty of Engineering Universitas Al-Washliyah Medan, Indonesia

DOI:

https://doi.org/10.2298/CICEQ240126018Y

Keywords:

Cr (VI) removal, nitric acid activator, bromide acid activator, spent coffee grounds bio-waste

Abstract

Global production of Cr(VI) can reach 44 million metric tons annually, of which 49% is released into the environment. Developments in the industry are to blame for this. There are numerous ways to defend against the damaging impact that heavy metals have on the environment. The presence of Cr(VI) causes environmental problems because it can endanger the physical and ecosystem balance of aquatic fauna in river flows. Exposure to Cr(VI) causes health problems such as liver, lung, and kidney damage. Adsorption is a straightforward, affordable, and user-friendly technique. The adsorbent utilized is derived from biomass waste, specifically spent coffee ground (SCG), but its potential as an adsorbent still needs to be developed. The purpose of this work was to examine the impact of activators on activated SCG and its capacity to adsorb Cr(VI) compounds. Nitric and bromide acid were used to activate 25 g of SCG for 1, 2, and 3 hours. Adsorbent-to-activator ratios were 1:4, 1:5, and 1:6. Cr(VI) solution was started at a concentration of 100 mg/L, and the adsorption process was stirred at 300 rpm. In the adsorption process, a ratio of 1:6 was best, along with an HNO3 solution (pH 4) as the best activator, a contact time of 120 minutes, and an initial Cr(VI) concentration of 20 mg/L. OH is the major functional group of both adsorbents.

References

[1] H. Zeng, H. Zeng, H. Zhang, A. Shahab, K. Zang, Y. Lu, I. Nabi, F. Naseem, H. Ullah, J. Cleaner Prod. 286 (2021) 124964. https://doi.org/10.1016/j.jclepro.2020.124964.

[2] K.P. Nickens, S.R. Patierno, S. Ceryak, Chem. Biol. Interact. 188 (2010) 276—288. https://doi.org/10.1016 /j.cbi.2010.04.018

[3] C.R. Myers, Free Radicals Biol. Med. 52 (2012) 2091—2107. http://doi.org/10.1016/j.freeradbiomed.2012.03.013.

[4] M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, M. Arellano, J.R. Robledo-Ortíz, Sep. Purif. Rev. 50 (2021) 333—362. https://doi.org/10.1080/15422119.2020.1783311.

[5] I. Loulidi, F Biukhlifi, M Ouchabi, A Amar, M Jabri, A Kali, C Hadey. Int Jour. Che. Eng. (2021) 11. https://doi.org/10.1155/ 2021/9977817.

[6] E. Cerrahoğlu Kaçakgil, S. Çetintaş.Sustain Chem. Pharm. 22 (2021) 100468. https://doi.org/10.1016/j.scp.2021.100468.

[7] M. E. González-López, C. M. Laureano-Anzaldo, A. A. Pérez-Fonseca, M. Arellano, J. R. Robledo-Ortíz. Sep. Purif. Rev. 50 (2021) 333—362. https://doi.org/10.1080/15422119.2020.1783311.

[8] N. Sankararamakrishnan, A. Dixit, L. Iyengar, R. Sanghi. Bio. Tech. 97 (2006) 2377—2382. https://doi.org/10.1016/j.biortech.2005.10.024.

[9] A. Parus, D. Rosińska, B. Karbowska, Chem. Ecol. 3(2020) 16—20. https://doi.org/10.1080/02757540.2019.1676418.

[10] E. Sharifikolouei, F. Baino, C. Galletti, D. Fino, M. Ferraris, Int. J. Appl. Ceram. Technol. 17 (2020) 105—112. https://doi.org/10.1111/ijac.13356.

[11] K. Bouhadjra, W. Lemlikchi, A. Ferhati, S. Mignard, Sci. Rep. 11 (2021) https://doi.org/10.1038/s41598-020-79069-5.

[12] I. Ghosh, S. Kar, T. Chatterjee, N. Bar, S. K. Das, Process Saf. Environ. Prot. 149 (2021) 345—361. https://doi.org/ 10.1016/j.psep.2020.11.003.

[13] M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, M.P. Ormad, Sep. Sci. Technol. 55 (2020) 3060—3071. https://doi.org/10.1080/01496395.2019.1673414.

[14] F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S.E. Chaabouni, J. Mol. Liq. 219 (2016) 279—288. https://doi.org/10.1016/j.molliq.2016.03.024.

[15] A. Kovalcik, S. Obruca, I. Marova, Food Bioprod. Process. 110 (2018) 104—119. https://doi.org/10.1016 /j.fbp.2018.05.002.

[16] I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, M. Jabri, A. Kali, C. Hadey, Int. J. Chem. Eng. 2021 (2021) https://doi.org/10.1155/2021/9977817.

[17] H.Y. Koay, A.T. Azman, Z. Mohd Zin, K.L Portman, M. Hasmadi, N.D Rusli, O. Aidat, M.K. Zainol, Future Foods 8 (2023) 100245. https://doi.org/10.1016/j.fufo.2023.100245.

[18] K. Ting Lee, Y. Tse Shih, S. Rajendran, Y. Kwon Park, W. Hsin Chen, Environ. Pollut. 324 (2023) 121330. https://doi.org/10.1016/j.envpol.2023.121330.

[19] G.V. Krishna Mohan, A. Naga Babu, K. Kalpana, K. Ravindhranath, Int. J. Environ. Sci. Technol. 16 (2019) 101—112. https://doi.org/10.1007/s13762-017-1593-7.

[20] I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, J. Mol. Liq. 229 (2017) 555—565. https://doi. org/10.1016/j.molliq.2016.12.096.

[21] D. Imessaoudene, S. Hanini, A. Bouzidi, A. Ararem, Desalin. Water Treat. 57 (2016) 6116—6123. https://doi. org/10.1080/19443994.2015.1041049.

[22] N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185 (2011) 49—54. https://doi.org/10.1016/j.jhazmat. 2010.08.114.

[23] M. Amirudin, E. Novita, T. Tasliman, Agroteknika 3 (2020) 99—108. https://doi.org/10.32530/agroteknika.v3i2.73.

[24] N. Fiol, C. Escudero, I. Villaescusa, Sep. Sci. Technol. 43 (2008) 582—596. https://doi.org/10.1080/0149639070181 2418.

[25] F. Benmahdi, S. Khettaf, M. Kolli. Bio. Conv. Bio. 14 (2024) 7087—7101. https://doi.org/10.1007/s13399-022-03041-8.

[26] H. Zian, I. Ulfin, dan Harmami, J. Sain. Sen. ITS 5 (2016) 107—110. https://ejurnal.its.ac.id/index.php/sains seni/article /view/17119/0.

[27] P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Desalination 261(2010) 52—60. https://doi.org/10.1016/j.desal.2010.05.032.

[28] N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, J. Hazard. Mater. 184 (2010) 126—134. https://doi.org/10. 1016/j.jhazmat.2010.08.014.

Downloads

Published

22.05.2024 — Updated on 09.04.2025

Issue

Section

Articles

How to Cite

INFLUENCE OF ACTIVATORS ON SPENT COFFEE GROUNDS AS BIOSORBENT FOR CHROMIUM: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(2), 105-111. https://doi.org/10.2298/CICEQ240126018Y

Similar Articles

31-40 of 116

You may also start an advanced similarity search for this article.