Influence of activators on spent coffee grounds as biosorbent for chromium Original scientific paper

Main Article Content

Ayuni Yustira
https://orcid.org/0009-0008-2119-2482
Hafifuddin Arif
https://orcid.org/0009-0004-9426-1777
Zahedi Zahedi
https://orcid.org/0000-0002-5579-7024
Fachrur Razi

Abstract

Global production of Cr (VI) can reach 44 million metric tons annually, of which 49% is released into the environment. Developments in the industry are to blame for this. There are numerous ways to defend against the damaging impact that heavy metals have on the environment. The presence of Cr (VI) metal causes environmental problems because it can endanger the physical and ecosystem balance of aquatic fauna in river flows. Exposure to Cr (VI) causes health problems such as liver, lung and kidney damage. Adsorption is a straightforward, affordable, and user-friendly technique. The adsorbent utilized is derived from biomass waste, specifically SCG, but its potential as an adsorbent still needs to be developed. The purpose of this work was to examine the impact of activators on activated SCG and its capacity to adsorb Cr (VI) metal. Nitric acid and Bromide acid activators were used to activate 25 g of SCG for 1, 2, and 3 hours. Adsorbent to activator ratios are 1:4, 1:5, and 1:6. Cr (VI) solution was started at a concentration of 100 mg/L, and the adsorption process was stirred at a rate of 300 rpm. In the adsorption process, a ratio of 1:6 is best, along with the best activator, which is HNO3, solution pH 4, contact time of 120 minutes, and initial solution concentration of 20 mg/L. OH is the major functional group in all adsorbents.

Article Details

How to Cite
Yustira, A. ., Arif, H. ., Zahedi, Z. ., & Razi, F. . (2024). Influence of activators on spent coffee grounds as biosorbent for chromium: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240126018Y
Section
Articles

References

H. Zeng, H. Zeng, H. Zhang, A. Shahab, K. Zang, Y. Lu, I. Nabi, F. Naseem, H. Ullah, J. Cleaner Prod. 286 (2021) 124964. https://doi.org/10.1016/j.jclepro.2020.124964.

K.P. Nickens, S.R. Patierno, S. Ceryak, Chem. Biol. Interact. 188 (2010) 276-288. https://doi.org/10.1016 /j.cbi.2010.04.018.

C.R. Myers, Free Radicals Biol. Med. 52 (2012) 2091-2107. http://doi.org/10.1016/j.freeradbiomed.2012.03.013.

M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, M. Arellano, J.R. Robledo-Ortíz, Sep. Purif. Rev. 50 (2021) 333-362. https://doi.org/10.1080/15422119.2020.1783311.

I. Loulidi, F Biukhlifi, M Ouchabi, A Amar, M Jabri, A Kali, and C Hadey. (2021). https://doi.org/10.1155/ 2021/9977817.

E. Cerrahoğlu Kaçakgil and S. Çetintaş. 22 (2021). https://doi.org/10.1016/j.scp.2021.100468.

M. E. González-López, C. M. Laureano-Anzaldo, A. A. Pérez-Fonseca, M. Arellano, and J. R. Robledo-Ortíz. 50 (2021) 333–362. https://doi.org/10.1080/15422119.2020.1783311.

N. Sankararamakrishnan, A. Dixit, L. Iyengar, and R. Sanghi. 97 (2006) 2377–2382. https://doi.org/10.1016/ j.biortech.2005.10.024.

A. Parus, D. Rosińska, B. Karbowska, Chem. Ecol. 3(2020) 16-20. https://doi.org/10.1080/02757540.2019.1676418.

E. Sharifikolouei, F. Baino, C. Galletti, D. Fino, M. Ferraris, Int. J. Appl. Ceram. Technol. 17 (2020) 105-112. https://doi.org/10.1111/ijac.13356.

K. Bouhadjra, W. Lemlikchi, A. Ferhati, S. Mignard, Sci. Rep. 11 (2021) https://doi.org/10.1038/s41598-020-79069-5.

I. Ghosh, S. Kar, T. Chatterjee, N. Bar, S. K. Das, Process Saf. Environ. Prot. 149 (2021) 345-361. https://doi.org/ 10.1016/j.psep.2020.11.003.

M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, M.P. Ormad, Sep. Sci. Technol. 55 (2020) 3060-3071. https://doi.org/10.1080/01496395.2019.1673414.

F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S.E. Chaabouni, J. Mol. Liq. 219 (2016) 279-288. https://doi.org/10.1016/j.molliq.2016.03.024.

A. Kovalcik, S. Obruca, I. Marova, Food Bioprod. Process. 110 (2018) 104-119. https://doi.org/10.1016 /j.fbp.2018.05.002.

I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, M. Jabri, A. Kali, C. Hadey, Int. J. Chem. Eng. 2021 (2021) https://doi.org/10.1155/2021/9977817.

H.Y. Koay, A.T. Azman, Z. Mohd Zin, K.L Portman, M. Hasmadi, N.D Rusli, O. Aidat, M.K. Zainol, Future Foods 8 (2023) 100245. https://doi.org/10.1016/j.fufo.2023.100245.

K. Ting Lee, Y. Tse Shih, S. Rajendran, Y. Kwon Park, W. Hsin Chen, Environ. Pollut.. 324 (2023) 121330. https://doi.org/10.1016/j.envpol.2023.121330.

G.V. Krishna Mohan, A. Naga Babu, K. Kalpana, K. Ravindhranath, Int. J. Environ. Sci. Technol. 16 (2019) 101-112. https://doi.org/10.1007/s13762-017-1593-7.

I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, J. Mol. Liq. 229 (2017) 555-565. https://doi. org/10.1016/j.molliq.2016.12.096.

D. Imessaoudene, S. Hanini, A. Bouzidi, A. Ararem, Desalin. Water Treat. 57 (2016) 6116-6123. https://doi. org/10.1080/19443994.2015.1041049.

N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185 (2011) 49-54. https://doi.org/10.1016/j.jhazmat. 2010.08.114.

M. Amirudin, E. Novita, T. Tasliman, Agroteknika 3 (2020) 99-108. https://doi.org/10.32530/agroteknika.v3i2.73.

N. Fiol, C. Escudero, I. Villaescusa, Sep. Sci. Technol. 43 (2008) 582-596. https://doi.org/10.1080/0149639070181 2418.

Benmahdi, F, Khettaf, S, Kolli M. 14(2024) 7087-7101. https://doi.org/10.1007/s13399-022-03041-8.

H. Zian, I. Ulfin, dan Harmami, J. Sains Seni ITS 5 (2016) 107-110. https://ejurnal.its.ac.id/index.php/sains seni/article /view/17119/0

P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Desalination 261(2010) 52-60. https://doi.org/10.1016/j.desal.2010.05.032.

N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, J. Hazard. Mater. 184 (2010) 126-134. https://doi.org/10. 1016/j.jhazmat.2010.08.014.