Development of a breathable polymeric membrane and process optimization by using a general full factorial design

Authors

  • Imene Ghezal Textile Engineering Laboratory, University of Monastir, 5070 Ksar-Hellal, Tunisia and National Engineering School of Monastir, University of Monastir, 5019 Monastir, Tunisia https://orcid.org/0000-0002-4687-7022
  • Ali Moussa Textile Engineering Laboratory, University of Monastir, 5070 Ksar-Hellal, Tunisia and National Engineering School of Monastir, University of Monastir, 5019 Monastir, Tunisia https://orcid.org/0000-0002-0848-9926
  • Imed Ben Marzoug Textile Engineering Laboratory, University of Monastir, 5070 Ksar-Hellal, Tunisia and Higher Institute of Technological Studies of Ksar-Hellal, 5070 Ksar-Hellal, Tunisia
  • Ahmida El-Achari Université Lille Nord de France, 59000 Lille, France and ENSAIT, GEMTEX, 2 Allée Louise et Victor Champier 59100 Roubaix, France
  • Christine Campagne Université Lille Nord de France, 59000 Lille, France and ENSAIT, GEMTEX, 2 Allée Louise et Victor Champier 59100 Roubaix, France
  • Faouzi Sakli Textile Engineering Laboratory, University of Monastir, 5070 Ksar-Hellal, Tunisia and Higher Institute of Technological Studies of Ksar-Hellal, 5070 Ksar-Hellal, Tunisia

DOI:

https://doi.org/10.2298/CICEQ240202017G

Keywords:

dense membrane, breathable membrane, absorption rate, water vapor permeability, windproofness

Abstract

The aim of this research was to produce a breathable hydrophilic membrane that can be laminated to textile fabrics to enhance their resistance to water penetration without restricting their breathability. For this purpose, aliphatic polyester polyurethane and acrylic ester copolymers were used. Quantities of both chemicals were varied according to three levels each. A general full factorial design was used to analyze responses that were the water vapor permeability index (WVPI (%)) and the absorption rate (Abs rate (%)). The membrane synthesis process was then optimized by using the Minitab response optimizer. The optimum polymeric membrane water vapor permeability and absorption rate were equal to 504.148 g∙m-2∙day-1 and 50.401%, respectively. Based on obtained results, the developed polymeric membrane was judged breathable. The morphological aspect of the dense membrane was also analyzed. It was noticed that air bubbles with different morphological types appeared in the nonporous membrane structure. Finally, it was concluded that the developed membrane can be thermo-assembled with other textile layers to enhance their resistance to wind and water penetration without affecting their breathability. 

References

M. Zahid, G. Mazzon, A. Athanassiou, I.S. Bayer, Adv. Colloid Interface Sci. 270 (2019) 216–250. https://doi.org/10.1016/j.cis.2019.06.001

A. Gugliuzza, E. Drioli, J. Memb. Sci. 446 (2013) 350–375. https://doi.org/10.1016/j.memsci.2013.07.014

F.J. Maksoud, M. Lameh, S. Fayyad, N. Ismail, A.R. Tehrani-Bagha, N. Ghaddar, K. Ghali, J. Appl. Polym. Sci. 135 (2018) 45660. https://doi.org/10.1002/app.45660

Waterproof Breathable Fabrics Report, Balancing Performance and Environmental sustainability, https://www.innovationintextiles.com/waterproof-breathable-fabrics-balancing-performance-and-environmental-sustainability/ [accessed 2 February 2024].

J. Sheng, Y. Xu, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 9 (2017) 15139–15147. https://doi.org/10.1021/acsami.7b02594

J. Zhao, W. Zhu, X. Wang, L. Liu, J. Yu, B. Ding, ACS Nano 14 (2020) 1045–1054. https://doi.org/10.1021/acsnano.9b08595

F. Fornasiero, Curr. Opin. Chem. Eng. 16 (2017) 1–8. https://doi.org/10.1016/j.coche.2017.02.001

Y. Zhang, X. Li, H. Wang, B. Wang, J. Li, D. Cheng, Y. Lu, Nanomaterials 12 (2022) 3071. https://doi.org/10.3390/nano12173071

Y. Chang, F. Liu, Materials (Basel, Switz) 16 (2023) 5339. https://doi.org/10.3390/ma16155339

S. Shi, Y. Han, J. Hu, Prog. Org. Coat. 137 (2019) 105303. https://doi.org/10.1016/j.porgcoat.2019.105303

D. Negru, L. Buhu, E. Loghin, I. Dulgheriu, A. Buhu, Ind. Text. 68 (2017) 269–274. http://doi.org/10.35530/IT.068.04.1350

S. Shi, C. Zhi, S. Zhang, J. Yang, Y. Si, Y. Jiang, Y. Ming, K.T. Lau, B. Fei, J. Hu, ACS Appl. Mater. Interfaces 14 (2022) 39610–39621. https://doi.org/10.1021/acsami.2c11251

A. Mukhopadhyay, V.K. Midha, J. Ind. Text. 37 (2008) 225–262. https://doi.org/10.1177/1528083707082164

A. Mukhopadhyay, V.K. Vinay Kumar Midha, J. Ind. Text. 38 (2008) 17–41. https://doi.org/10.1177/1528083707082166

M. Gorji, M. Karimi, S. Nasheroahkam, J. Ind. Text. 47 (2018) 1166–1184. https://doi.org/10.1177/1528083716682920

E.-Y. Kim, J.-H. Lee, D.-J. Lee, Y.-H. Lee, J.-H. Lee, H.-D. Kim, J. Appl. Polym. Sci. 129 (2013) 1745–1751. https://doi.org/10.1002/app.38860

L. Sheng, X. Zhang, Z. Ge, Z. Liang, X. Liu, C. Chai, Y. Luo, J. Coat. Technol. Res. 15 (2018) 1283–1292. https://doi.org/10.1007/s11998-018-0096-x

Y. Ma, M. Zhang, W. Du, S. Sun, B. Zhao, Y. Cheng, Polymers (Basel, Switz). 15 (2023) 1759. https://doi.org/10.3390/polym15071759

Y. Guo, W. Zhou, L. Wang, Y. Dong, J. Yu, X. Li, B. Ding, ACS Appl. Bio Mater. 2 (2019) 5949–5956. https://doi.org/10.1021/acsabm.9b00875

Y. Zhang, T.T. Li, H.T. Ren, F. Sun, B.C. Shiu, C.W. Lou, J.H. Lin, J. Sandwich Struct. Mater. 23 (2021) 2817–2831. https://doi.org/10.1177/1099636220909750

W. Zhou, X. Gong, Y. Li, Y. Si, S. Zhang, J. Yu, B. Ding, J. Colloid Interface Sci. 602 (2021) 105–114.

https://doi.org/10.1016/j.jcis.2021.05.171

W. Zhou, J. Yu, B. Ding, Compos. Commun. 35 (2022) 101337.

https://doi.org/10.1016/j.coco.2022.101337

W. Zhou, X. Gong, Y. Li, Y. Si, S. Zhang, J. Yu, B. Ding, Chem. Eng. J. (Amsterdam, Neth.) 427 (2021) 130925.

https://doi.org/10.1016/j.cej.2021.130925

G. Ren, Z. Li, L. Tian, D. Lu, Y. Jin, Y. Zhang, B. Li, H. Yu, HeJianxin, D. Sun, Colloids Surf., A 658 (2023) 130643.

https://doi.org/10.1016/j.colsurfa.2022.130643

Y. Lv, X. Sun, S. Yan, S. Xiong, L. Wang, H. Wang, S. Yang, X. Yin, Compos. Commun. 33 (2022) 101211.

https://doi.org/10.1016/j.coco.2022.101211

A. Saffar, P.J. Carreau, A. Ajji, M. R.Kamal, J. Membr. Sci. 462 (2014) 50–61.

https://doi.org/10.1016/j.memsci.2014.03.024

M. Gorji, M. Karimi, G. Mashaiekhi, S. Ramazani, Polym.-Plast. Technol. Mater. 58 (2019) 182–192.

https://doi.org/10.1080/03602559.2018.1466174

K.T. Djoko, H. Hadiyanto, D. Deariska, L. Nugraha, Chem. Ind. Chem. Eng. Q. 24 (2018) 139–147. https://doi.org/10.2298/CICEQ170112026K

Z. Li, X. Yue, G. He, Z. Li, Y. Yin, M. Gang, M. Gang, M. Gang, Z. Jiang, Int. J. Hydrogen Energy 40 (2015) 8398–8406. https://doi.org/10.1016/j.ijhydene.2015.04.138

B. Das, A. Das, V.K. Kothari, R. Fanguiero, M. de Araújo, Autex Res. J. 7 (2007) 100–110. https://doi.org/10.1515/aut-2007-070204

B. Das, A. Das, V.K. Kothari, R. Fangueiro, M. de Araújo, Autex Res. J. 7 (2007) 194–216. https://doi.org/10.1515/aut-2007-070305

A. Razzaque, P. Tesinova, L. Hes, J. Salacova, H.A. Abid, Fibers Polym. 18 (2017) 1924–1930. https://doi.org/10.1007/s12221-017-1154-1

J. Huang, Text. Res. J. 86 (2016) 325–336. https://doi.org/10.1177/0040517515588269

The British Standards Institution, BS 7209:Water Vapor Permeable Apparel Fabrics (1990). https://knowledge.bsigroup.com/products/specification-for-water-vapour-permeable-apparel-fabrics/standard

A. Rudawska, E. Jacniacka, Int. J. Adhes. Adhes. 29 (2009) 451–457. https://doi.org/10.1016/j.ijadhadh.2008.09.008

Lefebvre, G. (2011). [Ph.D. Thesis, University of Toulouse]. HAL Open Science. https://theses.hal.science/tel-04274825/document

I. Ghezal, A. Moussa, I. Ben Marzoug, A. El-Achari, C. Campagne, F. Sakli, Chem. Ind. Chem. Eng. Q. (2023). https://doi.org/10.2298/CICEQ230407029G

Downloads

Published

11.05.2024

Issue

Section

Articles

How to Cite

Development of a breathable polymeric membrane and process optimization by using a general full factorial design. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240202017G

Similar Articles

31-40 of 67

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)