CHEMICAL CHARACTERIZATION OF DIFFERENT WOOD FRAGMENTS AND THEIR VOLATILE COMPOSITION IN MODEL SPIRIT SOLUTIONS

Original scientific paper

Authors

  • Anita Smailagić University of Belgrade, Innovation Center, Faculty of Chemistry Ltd, P. O. Box 51, 11158 Belgrade, Serbia
  • Sonja Veljović University of Kragujevac, Faculty of Hotel Management and Tourism, Vojvodjanska bb, 36210 Vrnjačka Banja, Serbia https://orcid.org/0000-0001-6408-9153
  • Steva Lević University of Belgrade, Faculty of Agriculture, Nemanjina 4, 11080 Belgrade, Serbia https://orcid.org/0000-0001-8337-3475
  • Tatjana Šolević Knudsen: University of Belgrade, Institute of Chemistry, Technology and Metallurgy – Department of Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia https://orcid.org/0000-0002-2419-153X
  • Viktor Nedović University of Belgrade, Faculty of Agriculture, Nemanjina 4, 11080 Belgrade, Serbia https://orcid.org/0000-0002-8943-0087
  • Vladimir Pavlović University of Belgrade, Faculty of Agriculture, Nemanjina 4, 11080 Belgrade, Serbia https://orcid.org/0000-0002-1138-0331
  • Maja Natić University of Belgrade, Faculty of Chemistry, P. O. Box 51, 11158 Belgrade, Serbiа https://orcid.org/0000-0002-6610-297X

DOI:

https://doi.org/10.2298/CICEQ230309015S

Keywords:

oak, alternative wood, volatile compounds, model spirit solutions

Abstract

This study characterizes oak (sessile and pedunculate oak) and alternative wood (black locust, Myrobalan plum, wild cherry, and mulberry) species as important sources of volatile compounds of aged spirits. Nowadays, their fragments are used to hasten the brandies’ aging process. The ATR-FTIR spectra of analyzed wood samples are similar, only the mulberry FTIR spectrum contains unique peaks primarily due to its highest lignin content (40.93%). Using the untargeted GC-MS approach, a total of forty-one volatile compounds were identified in the wood extracts in a model spirit solution. The volatile profiles of alternative wood extracts in a model spirit solution were significantly different, both quantitatively and qualitatively, compared to those of oak. Coniferyl (23.14 µg/g—26.6 µg/g) and sinapyl (23.56 µg/g—25.82 µg/g) alcohols were the most abundant volatile compounds in investigated oak extracts. Resorcinol and coniferyl alcohol were the most abundant volatile compounds in black locust, sakuranin in wild cherry, while resorcinol and β-resorcinaldehyde in mulberry wood. To the best of our knowledge, sakuranin has not been detected in wild cherry wood until now. Besides wood chemical characteristics, the technology used during the aging process strongly influences on volatile profiles of aged brandies, thus, these compounds are potential chemical markers for discrimination between wood species as well as aging technologies.

References

M. Carpena, A.G. Pereira, M.A. Prieto, J. Simal-Gandara. Foods 9 (2020) 1160. https://doi.org/10.3390/foods9091160.

A. Martínez-Gil, M. Del Alamo-Sanza, R. Sánchez-Gómez, I. Nevares, Beverages 4 (2018) 94—118. https://doi.org/10.3390/beverages4040094.

J.R. Mosedale, J.L. Puech, Trends Food Sci. Technol. 9 (1998) 95—101. https://doi.org/10.1016/S0924-2244(98)00024-7.

B. Zhang, J. Cai, C.-Q. Duan, M.J. Reeves, F.A. He, Int. J. Mol. Sci. 16 (2015) 6978—7014. https://doi.org/10.3390/ijms16046978.

P. Híc, M. Horák, J. Balík, K. Martinák, Wood Sci. Technol. 55 (2021) 257—270. https://doi.org/10.1007/s00226-020-01225-x.

T.E. Coldea, C. Socaciu, E. Mudura, S.A. Socaci, F. Ranga, C.R. Pop, F. Vriesekoop, A. Pasqualone, Food Chem. 320 (2020) 126643. https://doi.org/10.1016/j.foodchem.2020.126643.

S. Cernîsev, Food Control. 73 (2017) 281—290. https://doi.org/10.1016/j.foodcont.2016.08.015.

M. Guerrero-Chanivet, M.V, García-Moreno, M.J., Valcárcel-Muñoz, D.A., Guillén-Sánchez, Wood Sci Technol (2023) 861—878. https://doi.org/10.1007/s00226-023-01478-2.

E. Sjöström, R. Alén, Analytical methods in wood chemistry, pulping, and papermaking, Verlag Berlin Heidelberg: Springer, Berlin (1999), p. 1—19. https://doi.org/10.1007/978-3-662-03898-7_1.

L. Wang, H. Ni, J. Zhang, Y. Zhao, G. Tian, Z. Wang, Sci. Total Environ. 717 (2020) 137241. https://doi.org/10.1016/j.scitotenv.2020.137241.

A. Le Floch, M. Jourdes, P.L. Teissedre, Carbohydr. Res. 417 (2015) 94—102. https://doi.org/10.1016/j.carres.2015.07.003.

Organisation Internationale de la Vigne et du Vin (OIV). International Code of Oenological Practices; OIV: Paris, France, (2015), pp. 1—17. ISBN 979-10-91799-10-2.

European Union. Commission Regulation (EC) No 1507/2006. Off. J. Eur. Union 2006, 280, 1—9.

C. Bargalló-Guinjoan, P. Matias-Guiu, J.J. Rodríguez-Bencomo, F. López, Wood Sci. Technol. 57 (2023) 307—323. https://doi.org/10.1007/s00226-022-01435-5.

K. Chira, P.L. Teissedre, Eur. Food Res. Technol. 240 (2015) 533—547. https://doi.org/10.1007/s00217-014-2352-3.

A. Smailagić, S. Veljović, U. Gašić, D. Dabić Zagorac, M. Stanković, K. Radotić, M. Natić, Ind. Crops Prod. 132 (2019) 156—167. https://doi.org/10.1016/j.indcrop.2019.02.017.

T. H. Soutar, M. Bryden (1955) J. Textile Inst. Transactions, 46 (1955) 8, T521—T528, https://doi.org/10.1080/19447027.1955.1075033.

S. Veljović, N. Tomić, M. Belović, N. Nikićević, P. Vukosavljević, M. Nikšić, V. Tešević, Food Technol. Biotech. 57 (2019) 408—417. https://doi.org/10.17113/ftb.57.03.19.6106.

R.P. Adams, Identification of essential oil components by gas chromatography/mass spectrometry, Allured Publishing Corporation, Carol Stream, IL (2007), p. 1902—1903. https://doi.org/10.1016/j.jasms.2005.07.008.

R. Flamini, P. Traldi, Mass spectrometry in grape and wine chemistry. USA: John Wiley & Sons, Inc, New Jersy (2010) p. 95—116. https://doi.org/10.1002/9780470552926.ch5.

Ø. Hammer, D.A.T. Harper, P.D. Ryan. Palaeontol.

Electron. 4(1) (2001) 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

F. Menges, "Spectragryph - optical spectroscopy software", Version 1.2.8, 2018, http://www.effemm2.de/spectragryph/.

B.S. Gupta, B.P. Jelle, T. Gao, (2015) Int. J. Spectrosc., 521938, https://doi.org/10.1155/2015/521938.

I. Kubovský, D. Kačíková, F. Kačík, Polymers 12 (2020) 485. https://doi.org/10.3390/polym12020485.

Z. Shi, G. Xua, J. Denga, M. Dong, V. Murugadoss, C. Liuc, Q. Shaoe, S. Wufand, Z. Guo, Green Chem. Lett. Rev. 12 (3) (2019) 235—243. https://doi.org/10.1080/17518253.2019.1627428.

P. Bock, N. Gierlinger, J. Raman Spectrosc.50 (2019) 778—792 https://doi.org/10.1002/jrs.5588.

H. Schulz, M. Baranska, Vib. Spectrosc. 43 (2007) 13—25. https://doi.org/ 10.1016/j.vibspec.2006.06.001.

C. Ganne-Chedeville, A.-S. Jääskelaäinen, J. Froidevaux, M. Hughes, P. Navi, Holzforschung 66 (2012) 163—170. https://doi.org/10.1515/HF.2011.148.

Ö. Özgenç, S. Durmaz, I.H. Boyaci, H. Eksi-Kocak, Spectrochim. Acta A Mol. Biomol. Spectrosc. 171 (2017) 395—400. https://doi.org/10.1016/j.saa.2016.08.026.

C.A. Peterson, C.J Perumalla, J. Exp. Bot. 35 (1984) 51—57. http://www.jstor.org/stable/23688558.

J.L. Puech, Am. J. Enol. Vitic. 35 (1984) 77—81. https://doi.org/10.5344/ajev.1984.35.2.77.

J.F.V. Latorraca, O. Dünisch, G. Koch, An. Acad. Bras. Cienc. 83 (2011) 1059—68. https://doi.org/10.1590/s0001-37652011005000016.

M. De Rosso, D. Cancian, A. Panighel, A. Dalla Vedova, R. Flamini, Wood Sci. Technol. 43 (2009) 375—385. https://doi.org/10.1007/s00226-008-0211-8.

R. Flamini, A. Dalla Vedova, D. Cancian, A. Panighel, M. De Rosso, J. Mass Spec. 42 (2007) 641—646. https://doi.org/10.1002/jms.1193.

R. Ghadiriasli, M.A.A. Mahmoud, M. Wagenstaller M, J.W. van de Kuilen, A. Buettner, Food. Res. Int. 150 (2021) 110776. https://doi.org/10.1016/j.foodres.2021.110776.

R. Ghadiriasli, M. Wagenstaller, A. Buettner, Anal. Bioanal. Chem. 410 (25) (2018) 6595—6607. https://doi.org/10.1007/s00216-018-1264-7.

L. Culleré, B. Fernández de Simón, E. Cadahía, V. Ferreira, P. Hernández-Orte, J. Cacho, LWT - Food Sci. Technol. 53 (1) (2013) 240—248. https://doi.org/10.1016/j.lwt.2013.02.010.

Caldeira, R. Santos, J. M. Ricardo-da-Silva, O. Anjos, H. Mira, A.P. Belchior, S. Canas, Food Chem. 211 (2016) 937—946. https://doi.org/10.1016/j.foodchem.2016.05.129.

H. Tamura, S. Boonbumrung, T. Yoshizawa, W. Varanyanond. Food Sci. Technol. Res., 7 (1) (2001) 72—77. https://doi.org/10.3136/fstr.7.72.

S. Chen, J. Tang, S. Fan, J. Zhang, S. Chen, Y. Liu, Q. Yang, Y. Xu. Foods10(10) (2021) 2392. https://doi.org/10.3390/foods10102392.

J.S. Câmara, M.A. Alves, J.C. Marques, Anal. Chim. Acta 563 (2006) 188—197. https://doi.org/10.1016/j.aca.2005.10.031.

V. Vinciguerra, M. Luna, A. Bistoni, F. Zollo, Phytochem. Anal. 14 (2003) 371—377. https://doi.org/10.1002/pca.730.

F. Chinnici, N. Natali, A. Bellachioma, A. Versari, C. Riponi, LWT - Food Sci. Technol. 60 (2015) 977—984. https://doi.org/10.1016/j.lwt.2014.10.029.

R. V. Bandeira Reidel, P. L. Cioni, L. Pistelli, Biochem. Syst. Ecol. 75 (2017) 10—17. https://doi.org/10.1016/j.bse.2017.10.001.

B. Fernández de Simón, M. Sanz, E. Cadahía, N. Sanz, E. Esteruelas, A.M. Muñoz, J. Mass Spec. 49 (2014) 353—70. https://doi.org/10.1002/jms.3347.

B. Fernández de Simón, E. Esteruelas, A.M. Muñoz, E. Cadahía, M. Sanz, J. Agri. Food Chem. 57 (2009) 3217—3227. https://doi.org/10.1021/jf803463h.

Downloads

Published

25.04.2024 — Updated on 18.06.2024

Issue

Section

Articles

How to Cite

CHEMICAL CHARACTERIZATION OF DIFFERENT WOOD FRAGMENTS AND THEIR VOLATILE COMPOSITION IN MODEL SPIRIT SOLUTIONS: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(4), 275-284. https://doi.org/10.2298/CICEQ230309015S

Funding data

Similar Articles

11-20 of 68

You may also start an advanced similarity search for this article.