Energy and exergy diagnostics of an industrial annular shaft limekiln working with producer gas as renewable biofuel
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ231020011CKeywords:
energy, exergy, limekiln, quicklime, biomass, biofuelAbstract
Quicklime, a globally significant commodity used in various industrial applications, is produced in limekilns requiring substantial energy, traditionally, from fossil fuels. However, due to escalating emission constraints and depletion of fossil fuel deposits, the quicklime industry explores alternative fuels, like biomass. The literature lacks feasibility diagnostic studies on limekilns using alternative biomass fuels. Thus, this article aims to conduct energy and exergy diagnostics on an industrial limekiln using producer gas derived from eucalyptus wood as renewable biofuel. Employing industrial data and thermodynamics principles, the equipment was characterized, and results were compared with literature findings for similar limekilns using fossil fuels. The Specific Energy Consumption for the producer gas-operated limekiln was 4.8 GJ/tquicklime, with energy and exergy efficiencies of 54.6% and 42.2%. Overall energy and exergy efficiencies were 42.0 % and 23.6%, respectively, lower than literature values. was 7.6 GJ/tquicklime, higher than literature results. Identified enhancements for both renewable and fossil fuel-powered limekilns involve recovering energy and exergy, including heat recovery from exhaust gases, minimizing thermal losses, and optimizing operational variables. These findings offer valuable insights for researchers exploring renewable biofuel adoption, like producer gas derived from eucalyptus wood, as alternatives to conventional fossil fuels in limekilns.
References
L. Navone, K. Moffitt, K.A. Hansen, J. Blinco, A. Payne, R. Speight, Waste Manage. 102 (2020) 149–160. https://doi.org/10.1016/j.wasman.2019.10.026
. Y. Liu, H. Shen, J. Zhang, W. Li, J. Liu, B. Liu, S. Zhang, Constr. Build. Mater. 395 (2023) 132292. https://doi.org/10.1016/j.conbuildmat.2023.132292
C. Shi, Y. Yang, Mater. 16 (2023) 4026. https://doi.org/10.3390/ma16114026
B. Li, F. Min, N. Zhang, J. Ma, Z. Li, Z. Yao, L. Zhang, Constr. Build. Mater. 408 (2023) 133492. https://doi.org/10.1016/j.conbuildmat.2023.133492
Statista (2023), Lime production by country in 2022, https://www.statista.com/statistics/657049/production-of-lime-worldwide/ [accessed 20 October 2023]
V. Alcántara, Y. Cadavid, M. Sánchez, C. Uribe, C. Echeverri-Uribe, J. Morales, J. Obando, A. Amell, Appl. Therm. Eng. 128 (2018) 393–401. https://doi.org/10.1016/j.applthermaleng.2017.09.018
A.S. Gutiérrez, C. Vandecasteele, Energy 36 (2011) 2820–2827. https://doi.org/10.1016/j.energy.2011.02.023
A. Wolter, W. Fuchs, ZKG Int. 60 (2007) 45–50. https://www.researchgate.net/publication/288154779_Specific_CO2_emissions_and_the_applications_of_lime_burning_kilns
E. Smadi, A. Chinnici, B. Dally, G.J. Nathan, Chem. Eng. J. 475 (2023) 146165. https://doi.org/10.1016/j.cej.2023.146165
W. Rong, B. Li, F. Qi, S.C.P. Cheung, Appl. Therm. Eng. 119 (2017) 629–638. https://doi.org/10.1016/j.applthermaleng.2017.03.090
S. Duan, B. Li, W. Rong, Mater. 15 (2022) 4024. https://doi.org/10.3390/ma15114024
M. Greco-Coppi, C. Hofmann, D. Walter, J. Ströhle, B. Epple, Mitig. Adapt. Strateg. Glob. Chang. 28 (2023) 30. https://doi.org/10.1007/s11027-023-10064-7
S.A. Jagnade, S.K. Nayak, J.M. Korath, N.N. Viswanathan, P.B. Abhale, Miner. Process. Extr. Metall. 132 (2023) 141–155 https://doi.org/10.1080/25726641.2023.2217403
T.S. Febriatna, P.S. Darmanto, F.B. Juangsa, Clean Energy. 7 (2023) 313–327. https://doi.org/10.1093/ce/zkac072
H. Piringer, Energy Procedia 120 (2017) 75–95. https://doi.org/10.1016/j.egypro.2017.07.156
A.S. Gutiérrez, J.B.C. Martínez, C. Vandecasteele, Appl. Therm. Eng. 51 (2013) 273–280. https://doi.org/10.1016/j.applthermaleng.2012.07.013
T.P.L. Camargos, D.L.F. Pottie, R.A.M. Ferreira, T.A.C. Maia, M.P. Porto, Energy 165 (2018) 630–638. https://doi.org/10.1016/j.energy.2018.09.109
V.F. Ramos, O.S. Pinheiro, E.F. da Costa Junior, A.O.S. da Costa, Energy 183 (2019) 946–957. https://doi.org/10.1016/j.energy.2019.07.001
T.F. Anacleto, A.E.G. O. Silva, S.R. da Silva, E.F. da Costa Junior, A.O.S. da Costa, Braz. J. Chem. Eng. 38 (2021) 197–214. https://doi.org/10.1007/s43153-020-00084-0
S.R. da Silva, G. Bonanato, E.F. da Costa Junior, B. Sarrouh, A.O.S. da Costa, Chem. Eng. Sci. 235 (2021) 116462. https://doi.org/10.1016/j.ces.2021.116462
M. Höök, X. Tang, Energy Policy 52 (2013) 797–809. https://doi.org/10.1016/j.enpol.2012.10.046
European Lime Association (EuLA), Eula Environmental Data Spreadsheet on 2011, Brussels, Belgium (2012)
WebQC (2023), Chemical Portal, https://www.webqc.org/ [accessed 20 October 2023]
J.M. Smith, H.C. Van Ness, M.M. Abbott, Introduction to Chemical Engineering Thermodynamics., McGraw Hill (2022). ISBN: 9781260721478
C.G. Maier, K.K. Kelley, J. Am. Chem. Soc. 54 (1932) 3243–3246. https://doi.org/10.1021/ja01347a029
National Institute of Standards and Technology (2023), Webbook, https://webbook.nist.gov/ [accessed 20 October 2023]
J.A. Dean, Lange’s Handbook of Chemistry, McGrawHill, New York (1999). ISBN: 9780070163843
H. Shahin, S. Hassanpour, A. Saboonchi, Energy Convers. Manage. 114 (2016) 110–121. https://doi.org/10.1016/j.enconman.2016.02.017
Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, The McGraw-Hill Companies, New York (2019). ISBN: 9781259822674
M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of engineering thermodynamics, John Wiley & Sons (2018). ISBN: 9781119391388
D.R. Morris, J. Szargut, Energy 11 (1986) 733–755. https://doi.org/10.1016/0360-5442(86)90013-7
P.A. Ochoa George, A.S. Gutiérrez, J.B. Cogollos Martínez, C. Vandecasteele, J. Cleaner Prod. 18 (2010) 1171–1176. https://doi.org/10.1016/j.jclepro.2010.03.019
G. Song, L. Shen, J. Xiao, Ind. Eng. Chem. Res. 50 (2011) 9758–9766. https://doi.org/10.1021/ie200534n
H. Piringer, W. Werner, ZKG Int. 61 (2008) 46–52. https://www.researchgate.net/publication/285806720_Conversion_of_large-diameter_single_shaft_kilns_to_lignite_dust_firing_successfully_concluded
L. Shen, T. Gao, J. Zhao, L. Wang, L. Wang, L. Liu, F. Chen, J. Xue, Renewable Sustainable Energy Rev. 34 (2014) 337–349. https://doi.org/10.1016/j.rser.2014.03.025
B. Jiang, D. Xia, B. Yu, R. Xiong, W. Ao, P. Zhang, L. Cong, J. Cleaner Prod. 240 (2019) 118147. https://doi.org/10.1016/j.jclepro.2019.118147
N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane, Energy Procedia 36 (2013) 596–606. https://doi.org/10.1016/j.egypro.2013.07.068
B.L.C. Pereira, A. de C.O. Carneiro, A.M.M.L. Carvalho, J.L. Colodette, A.C. Oliveira, M.P.F. Fontes, BioResources 8 (2013) 4574–4592. https://doi.org/10.15376/biores.8.3.4574-4592
K. Sasujit, N. Homdoung, N. Tippayawong, Energy Eng. 119 (2022) 2149–2167. https://doi.org/10.32604/ee.2022.022069
T. de P. Protásio, M.V. Scatolino, A.C.C. de Araújo, A.F.C.F. de Oliveira, I.C.R. de Figueiredo, M.R. de Assis, P.F. Trugilho, Bioenergy Res. 12 (2019) 626–641. https://doi.org/10.1007/s12155-019-10004-x
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Tomás Pessoa Londe Camargos, Andréa Oliveira Souza da Costa, Esly Ferreira Costa Junior
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 312248/2022-9