Experimental study of solar air heater with C shaped ribs coated with zeolite

Original scientific paper

Authors

  • Sureshkumar Petchimuthu Department of Mechanical Engineering, Government College of Engineering, Tirunelveli 627007, India https://orcid.org/0009-0008-7617-5612
  • Sathiya Moorthy Rajendran Department of Mechanical Engineering, Anna University Regional Campus, Coimbatore 641046, India https://orcid.org/0000-0001-9754-7800

DOI:

https://doi.org/10.2298/CICEQ231230010P

Keywords:

C-shaped ribs, perforations, zeolite coating, thermal performance, friction factor

Abstract

A study was conducted to determine the heat transmission rate and friction properties of a solar air heater's (SAH) absorber by including c-shaped rib, with and without perforations, and the efficiency of this absorber with and without zeolite coating was investigated. This research is carried out by varying Reynolds numbers (Re) ranges between 3000 to 18000, height of the C-shaped rib (e) ranges between 2 mm to 4 mm, and the embedded hole diameter in the c-shaped rib ranges between 1 mm to 3 mm. The impact of rib height, hole diameter, and zeolite coating on thermal efficiency and Nusselt number is compared to a flat channel under the same flow environments. A strong secondary flow is created by the free shear layer reattaching more often at higher rib heights, and a smaller hole can exaggerate heat transfer and enhance the cross-flow effect. The thermal efficiency and Nusselt number of the solar air heater with c-ribs (Rib height = 4mm and hole diameter = 1mm) and zeolite coating on the absorber increased by 29.67% and 62.16% over the flat absorber. Ribs 4mm high can increase duct friction by up to 3.1 times compared to a smooth duct.

References

S. Yadav, M.Kaushal, Varun, Siddhartha, Exp. Therm. Fluid Sci. 44 (2013) 34–41. https://doi.org/10.1016/j.expthermflusci.2012.05.011

A. Lanjewar, J.L. Bhagoria, R. Sarviya, Exp. Therm. Fluid Sci. 35 (6) (2011) 986–995. https://doi.org/10.1016/j.expthermflusci.2011.01.019

N. K. Pandey, V.K. Bajpai, Varun, Sol. Energy 134 (2016) 314–326. https://doi.org/10.1016/j.solener.2016.05.007

R.P. Saini, J. Verma, Energy 33 (8) (2008) 1277–1287. https://doi.org/ 10.1016/j.energy.2008.02.017

Varun, R.P. Saini, S.K. Singal, Renewable Energy 33 (6) (2008) 1398–1405. https://doi.org/10.1016/j.renene.2007.07.013

A. Kumar, J.L. Bhagoria, R.M. Sarviya, Energy Convers. Manage. 50 (8) (2009) 2106–2117. https://doi.org/10.1016/j.enconman.2009.01.025

M.K. Sahu, R.K. Prasad, Renewable Energy 96 (2016) 233–243. https://doi.org/10.1016/j.renene.2016.04.083

D. Jin, M. Zhang, P. Wang, S. Xu, Energy 89 (2015) 178–190. https://doi.org/10.1016/j.energy.2015.07.069

A.S. Yadav, J.L. Bhagoria, Int. J. Therm. Sci. 79 (2014) 111–131. https://doi.org/10.1016/j.ijthermalsci.2014.01.008

K.R. Aharwal, B.K. Gandhi, J.S. Saini, Renewable Energy 33 (4) (2008) 585–596. https://doi.org/10.1016/j.renene.2007.03.023

M.M. Sahu, J.L. Bhagoria, Renewable Energy 30 (13) (2005) 2057–2073. https://doi.org/10.1016/j.renene.2004.10.016

V.S. Hans, R.P. Saini, J.S. Saini, Sol. Energy 84 (6) (2010) 898–911. https://doi.org/10.1016/j.solener.2010.02.004

H.K. Ghritlahre, P.K. Sahu, S. Chand, Sol. Energy 199 (2020) 173–182. https://doi.org/10.1016/j.solener.2020.01.068

Y. Agrawal, J.L. Bhagoria, V.S. Pagey, Mater. Today Proc. 47 (2021) 6067–6073. https://doi.org/10.1016/j.matpr.2021.04.623

A.P. Singh, Varun, Siddhartha, Exp. Therm. Fluid Sci. 54 (2014) 117–126. https://doi.org/10.1016/j.expthermflusci.2014.02.004

R. Kumar, S.K. Verma, M. Singh, Mater. Today Proc. 44 (2021) 961–967. https://doi.org/10.1016/j.matpr.2020.11.006

Z. Jelonek, A. Drobniak, M. Mastalerz, I. Jelonek, Sci. Total Environ. (2020) 141267. https://doi.org/10.1016/j.energy.2022.125507

B. Bhushan, R. Singh, Sol. Energy 85 (5) (2011) 1109–1118. https://doi.org/10.1016/j.solener.2011.03.007

S. Alfarawi, S.A. Abdel-Moneim, A. Bodalal, Int. J. Therm. Sci. 118 (2017) 123–138. https://doi.org/10.1016/j.ijthermalsci.2017.04.017

A.M. Ebrahim Momin, J.S. Saini, S.C. Solanki, Int. J. Heat Mass Transfer 45 (16) (2002) 3383–3396. https://doi.org/10.1016/S0017-9310(02)00046-7

A. Lanjewar, J.L. Bhagoria, R.M. Sarviya, Energy 36(7) (2011) 4531–4541. https://doi.org/10.1016/j.energy.2011.03.054

S.B. Bopche, M.S. Tandale, Int. J. Heat Mass Transfer 52 (2009) 2834–2848. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039

A. standard 93-97, 1977.

R. Kumar, V. Goel, P. Singh, A. Saxena, A.S. Kashyap, A. Rai, J. Energy Storage. 26 (2019) 100978. https://doi.org/10.1016/j.est.2019.100978

F. Afshari, A. Sözen, A. Khanlari, A.D. Tuncer, C. Şirin, Renewable Energy 158 (2020) 297–310. https://doi.org/10.1016/j.renene.2020.05.148

R. Khatri, S. Goswami, M. Anas, S. Sharma, S. Agarwal, S. Aggarwal, Energy Reports 6 (2020) 627–633. https://doi.org/10.1016/j.egyr.2020.11.177

C.D. Ho, H. Chang, R.C. Wang, C.S. Lin, Appl. Energy 100 (2012) 155–163. https://doi.org/10.1016/j.apenergy.2012.03.065

A.A. Farhan, A. Issam M.Ali, H.E. Ahmed, Renewable Energy 169 (2021) 1373–1385. https://doi.org/10.1016/j.renene.2021.01.109

Q.A. Jawad, A.M.J. Mahdy, A.H. Khuder, M.T. Chaichan, Case Stud. Therm. Eng. 19 (2020) 100622. https://doi.org/10.1016/j.csite.2020.100622

R. Azad, S. Bhuvad, A. Lanjewar, Int. J. Therm. Sci. 167 (2021) 107013. https://doi.org/10.1016/j.ijthermalsci.2021.107013

S. Rönsch, B. Auer, M. Kinateder, K. Gleichmann, Chem Eng Technol 43 (12) (2020) 2530-2537. https://doi.org/10.1002/ceat.202000342

Downloads

Published

29.03.2024

Issue

Section

Articles

How to Cite

Experimental study of solar air heater with C shaped ribs coated with zeolite: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ231230010P

Similar Articles

11-20 of 59

You may also start an advanced similarity search for this article.