Numerical simulation on the processing of crumb rubber modified asphalt by ultrasound and mechanical stirring

Original scientific paper

Authors

  • Gang Fu Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China https://orcid.org/0009-0003-5939-2432
  • Ruien Yu Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China and Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China https://orcid.org/0000-0002-0729-4748
  • Xiaolin Yu Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China https://orcid.org/0009-0002-2993-9620
  • Xiaohan Li Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China https://orcid.org/0009-0008-9814-1501
  • Xiaowen Chen State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 101100, China https://orcid.org/0009-0004-7380-1797
  • Xiaoyan Zhang Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China https://orcid.org/0009-0008-0739-4942
  • Yanfei Kou Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China https://orcid.org/0000-0003-2461-9863
  • Xijing Zhu Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China https://orcid.org/0000-0003-3721-3336

DOI:

https://doi.org/10.2298/CICEQ230724008F

Keywords:

Ultrasound, cavitation, crumb rubber modified asphalt, mechanical stirring, cfd simulation

Abstract

Based on the existing modified asphalt production equipment, the power ultrasonic is integrated into the existing stirring dispersion technology, and the FLUENT fluid simulation is used to combine ultrasonic and stirring. Stirring and ultrasonic two motion forms were realized step by step, and the movement states of crumb rubber modified asphalt were simulated under the interaction of ultrasonic and stirring, which provide a new method for the research of crumb rubber modified asphalt production equipment. The results show that under the action of ultrasound, only positive pressure exists in the modified asphalt flow field after adding the cavitation model, and the maximum absolute pressure can reach about 1200kPa. With the increase of ultrasonic time, the air content rate under the tool head is periodic and regular changed and will gradually increase, the number of cavitation bubbles will continue to increase, and the cavitation intensity will increase. The influence of asphalt viscosity on the volume fraction of cavitation bubbles was studied, when the viscosity of the system is 0.8 Pa·s, it is more conducive to the occurrence of cavitation, The process of ultrasonic synergistic stirring is conducive to inhibiting the segregation phenomenon of crumb rubber modified asphalt.

References

M. Bueno, M.R. Kakar, Z. Refaa, J. Worlitschek, A. Stamatiou, M.N. Partl, Sci. Rep. 9 (2019) 20342. https://doi.org/10.1038/s41598-019-56808-x

F. Zhang, J.Y. Yu, Constr. Build. Mater. 24 (2010) 410-418. https://doi.org/10.1016/j.conbuildmat.2009.10.003

P.F. Liu, H.N. Xu, D.W. Wang, C.H. Wang, C. Schulze, M. Oeser, Constr. Build. Mater. 162 (2018) 765-780. https://doi.org/10.1016/j.conbuildmat.2017.12.082

M. Zaumanis, L.D. Poulikakos, M.N. Partl, Mater. Des. 141 (2018) 185-201. https://doi.org/10.1016/j.matdes.2017.12.035

E.A.A. Siddig, P.F. Cheng, Y.M. Li, Constr. Build. Mater. 169 (2018) 276-282. https://doi.org/10.1016/j.conbuildmat.2018.03.012

W.Q. Luo, J.C. Chen, Constr. Build. Mater. 25 (2011) 1830-1835. https://doi.org/10.1016/j.conbuildmat.2010.11.079

D. L. Presti. Construct. Build. Mater., 49 (2013) 863-881. https://doi.org/10.1016/j.conbuildmat.2013.09.007

T. Ma, H. Wang, L. He, Y.L. Zhao, X.M. Huang, J. Chen. Mater. Civ. Eng., 29 (2017) 04017036-1-10 https://doi.org/10.1061/(ASCE)MT.1943-5533.0001890

M. Ameri, A. Mansourian, A.H. Sheikhmotevali, Constr. Build. Mater. 40 (2013) 438-447. https://doi.org/10.1016/j.conbuildmat.2012.09.109

O.M. Xu, F.P. Xiao, S. Han, S.N. Amirkhanian, Z.J. Wang, Constr. Build. Mater. 112 (2016) 49-58. https://doi.org/10.1016/j.conbuildmat.2016.02.069

N.Y. Liu, K.Z. Yan, L.Y. You, M. Chen, Constr. Build. Mater. 189 (2018) 460-469. https://doi.org/10.1016/j.conbbuildmat.2018.08.206

Z.L. Jiang, C.B. Hu, S.M. Easa, X.Y. Zheng, Y. Zhang, J. Appl. Polym. Sci. 134 (2017) 44850. https://doi.org/10.1002/app.44850

Z. Leng, R.K. Padhan, A. Sreeram, J. Cleaner Prod. 180 (2018) 682-688. https://doi.org/10.1016/j.jclepro.2018.01.171

X.H. Ding, L.C. Chen, T. Ma, H.X. Ma, L.H. Gu, T. Chen, Y. Ma, Constr. Build. Mater. 203 (2019) 682-688. https://doi.org/10.1016/j.conbuildmat.2019.01.114

J.Y. Hu, T. Ma, T. Yin, Y. Zhou, J. Cleaner Prod. 333 (2022) 130085. https://doi.org/10.1016/j.jclepro.2021.130085

Y.M. Li, R Ma, X.R. Wang, P.F. Cheng, Y.J. Chen. Case Stud. 20 (2024) e02820.

https://doi.org/10.1016/j.cscm.2023.e02820

M.M. Phiri, M.J. Phiri, K. Formela, S.P. Hlangothi, Composites, Part B, 204 (2021) 108429. https://doi.org/10.1016/j.compositesb.2020.108429

L. Guo, C.S. Wang, D.J. Lv, D.H. Ren, T.J. Zhai, C.L. Sun, H.C. Liu, J. Cleaner Prod. 279 (2021) 123266. https://doi.org/10.1016/j.jclepro.2020.123266

F. Li, X. Zhang, L.B. Wang, R.X. Zhai, Constr. Build. Mater. 354 (2022) 129168. https://doi.org/10.1016/j.conbuildmat.2022.129168

P.P. Kong, X.H. Chen, G. Xu, W. Wei, Polym. Eng. Sci. 61 (2021) 2567-2575. https://doi.org/10.1002/pen.25783

X. Xiong, Y.M. Chu, Y. Luo, Y. H. Peng, N. N. Yang, J.M. Yan, X. Y. Chen, F. L. Zou, A. Sreeram. J. Cleaner Prod. 426 (2023) 139222. https://doi.org/10.1016/j.jclepro.2023.139222

J.R. Wang, Z.Q. Zhang, Z.L. Li, J. Mater. Civ. Eng. 32 (2019) 04019330. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002971

C. Loderer, M.N. Partl, L.D. Poulikakos, Constr. Build. Mater. 191 (2018) 1159-1171. https://doi.org/10.1016/j.conbuildmat.2018.10.046

D. Özçimen, M.Ö. Gülyurt, B. İnan, Chem. Ind. Chem. Eng. Q. 23 (2017) 367-375. https://doi.org/10.2298/CICEQ160306051O

A. Thakur, R.K. Gupta, V. Udhayabanu, D.R. Peshwe, Y.Y. Mahajan, Philos. Mag. Lett. 103 (2023) 2162617. https://doi.org/10.1080/09500839.2022.2162617

E. Malek, S. Bagherifard, O. Unal, A. Jam, S. Shao, M. Guagliano, N. Shamsaei, Surf. Coat. Technol. 463 (2023) 129512. https://doi.org/10.1016/j.surfcoat.2023.129512

F. Liang, J. Fan, Y.H. Guo, M.H. Fan, J.J. Wang, H.Q. Yang, Ind. Eng. Chem. Res. 47 (2008) 8550-8554. https://doi.org/10.1021/ie8003946

H.T. Kim, H. Shin, I.Y. Jeon, M. Yousaf, J. Baik, H.W. Cheong, N. Park, J.B. Baek, T.H. Kwon, Adv. Mater. 29 (2017) 1702747. https://doi.org/10.1002/adma.201702747

D.P. Mohapatra, D.M. Kirpalani, Appl. Petrochem. Res. 6 (2016) 107-115. https://doi.org/10.1007/s13203-016-0146-1

M. Razavifar, J. Qajar, Chem. Eng. Process.153 (2020) 107964. https://doi.org/10.1016/j.cep.2020.107964

S.M. Mousavi, A. Ramazani, I. Najafi, S.M. Davachi, Petrol. Sci. 9 (2012) 82-88. https://doi.org/10.1007/s12182-012-0186-9

L.M. Wang, Z.K. Song, C. Gong, Case. Stud. Constr. Mat. 16 (2022) e01012. https://doi.org/10.1016/j.cscm.2022.e01012

Published

08.03.2024

Issue

Section

Articles

How to Cite

Numerical simulation on the processing of crumb rubber modified asphalt by ultrasound and mechanical stirring: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ230724008F

Similar Articles

51-57 of 57

You may also start an advanced similarity search for this article.