THE EFFECT OF GLYCEROL AND SAGO STARCH ADDITION ON THE CHARACTERISTICS OF BIOPLASTICS BASED ON ORANGE PEEL PECTIN

Original scientific paper

Authors

  • Muhammad Thoriq Al Fath Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan, 20155, Indonesia https://orcid.org/0000-0001-9382-5949
  • Ghendis Ekawati Ayu Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan, 20155, Indonesia https://orcid.org/0009-0006-7351-7408
  • Gina Cynthia Raphita Hasibuan Department of Civil Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan, 20155, Indonesia https://orcid.org/0000-0003-4623-936X
  • Nisaul Fadilah Dalimunthe Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan, 20155, Indonesia https://orcid.org/0000-0002-7028-8308
  • Vikram Alexander Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan, 20155, Indonesia https://orcid.org/0000-0002-3544-8345

DOI:

https://doi.org/10.2298/CICEQ231214007A

Keywords:

bioplastic, pectin, starch, orange peel

Abstract

Sustainable food packaging materials have significant interest in addressing environmental issues by making renewable substitutes such as bioplastics based on pectin. Orange peel has a relatively high pectin content of 42.5%, which can be synthesized into bioplastics. Pectin-based bioplastics tend to have limitations in terms of mechanical and physical strength due to the hygroscopic nature of pectin. This study aims to determine the effect of adding glycerol and sago starch on the characteristics of orange peel pectin-based bioplastics. The casting method was used in the bioplastic formulation using the variation of the pectin:starch ratio (75:25, 65:35, 55:45; and 50:50%) and glycerol composition (10, 20, 30, and 40%). Based on the results, the pectin obtained was categorized as low methoxyl pectin and ester pectin. The characterizations of bioplastics achieved the maximum value of the tensile strength of bioplastics was 4.22 MPa, obtained by adding pectin:starch (50:50%) and 10% glycerol. The maximum value of the elongation properties at the break of bioplastics is 24%, obtained by adding the composition of pectin:starch (75:25%) and 40% glycerol. The more additions of the pectin:starch and glycerol composition result in a higher water vapor evaporation rate.  Hence, utilizing orange peel pectin-based bioplastics offers a sustainable solution by exploring repurposing waste to create bioplastics for food packaging, thereby contributing to environmental preservation.

References

L.G. Hong, N.Y. Yuhana, E.Z.E. Zawawi, AIMS Mater. Sci. 8 (2021) 166—184. https://dx.doi.org/10.3934/matersci.2021012.

M. Simonic, F. Zemljic, Chem. Ind. Chem. Eng. Q. 27 (2021) 79—84. https://dx.doi.org/10.2298/ciceq191024026s.

Anonim, Applications for Bioplastics, Berlin, 2022. https://www.european-bioplastics.org/market/applications-sectors/.

I. Karimi Sani, M. Masoudpour-Behabadi, M. Alizadeh Sani, H. Motalebinejad, A.S.M. Juma, A. Asdagh, H. Eghbaljoo, S.M. Khodaei, J.W. Rhim, F. Mohammadi, Food Chem. 405 (2023) 134964. https://dx.doi.org/10.1016/j.foodchem.2022.134964.

M.T. Al Fath, G.E. Ayu, M. Lubis, G.C.R. Hasibuan, N.F. Dalimunthe, RASAYAN J. Chem. 16 (2023) 1630—1636. https://dx.doi.org/10.31788/rjc.2023.1638464.

A.F. Fracasso, C.A. Perussello, D. Carpiné, C.L. de O. Petkowicz, C.W.I. Haminiuk, Int. J. Biol. Macromol. 109 (2018) 784—792. https://dx.doi.org/10.1016/j.ijbiomac.2017.11.060.

I.K. Sani, L. Aminoleslami, S.S. Mirtalebi, M.A. Sani, E. Mansouri, H. Eghbaljoo, A.T. Jalil, R.D. Thanoon, S.M. Khodaei, F. Mohammadi, B. Kazemzadeh, Food Package. Shelf Life 37 (2023) 101087. https://dx.doi.org/10.1016/j.fpsl.2023.101087.

Anonim, Produksi Buah-Buahan Di Sumatera Utara, Jakarta, 2022. https://sumut.bps.go.id/statictable/2022/03/08/2578/produksi-buah-buahan-menurut-kabupaten-kota-dan-jenis-tanaman-di-provinsi-sumatera-utara-2020-dan-2021.html.

V. Bátori, M. Jabbari, D. Åkesson, P.R. Lennartsson, M.J. Taherzadeh, A. Zamani, Int. J. Polym. Sci. 2017 (2017) 9732329. https://dx.doi.org/10.1155/2017/9732329.

M.T. Al Fath, H. Nasution, H. Harahap, G.E. Ayu, AIP Conf. Proc. 2175 (2019) 020012. https://doi.org/10.1063/1.5134576.

M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Carbohydr. Polym. 157 (2017) 167—175. https://dx.doi.org/10.1016/j.carbpol.2016.09.062.

M.G. Kupervaser, M.V. Traffano-Schiffo, M.L. Dellamea, S.K. Flores, C.A. Sosa, Food Hydrocoll. Heal. 4 (2023) 100138. https://dx.doi.org/10.1016/j.fhfh.2023.100138.

Direktorat Jenderal Perkebunan, Statistical of National Leading Estate Crops Commodity 2019—2021, Jakarta, 2021. https://ditjenbun.pertanian.go.id/template/uploads/2021/04/BUKU-STATISTIK-PERKEBUNAN-2019-2021-OK.pdf.

J. Prachayawarakorn, W. Pattanasin, Songklanakarin J. Sci. Technol. 38 (2016) 129—136. https://www.thaiscience.info/Journals/Article/SONG/10981886.pdf.

Rosida, Sudaryati, A.M. Yahya, J. Phys. Conf. Ser. 953 (2018) 012248. https://dx.doi.org/10.1088/1742-6596/953/1/012248.

M.A. Bertuzzi, E.F. Castro Vidaurre, M. Armada, J.C. Gottifredi, J. Food Eng. 80 (2007) 972—978. https://dx.doi.org/10.1016/j.jfoodeng.2006.07.016.

L.I. Yuniarti, G.S. Hutomo, A. Rahim, Agrotekbis 2 (2014) 38—46. https://media.neliti.com/media/publications/246268-none-70e1bb8e.pdf.

Y. Darni, H. Utami, R. Septiana, R.A. Fitriana, J. Bahan Alam Terbarukan 6 (2017) 158—167. https://dx.doi.org/10.15294/jbat.v6i2.9707.

Z. Octarya, D. Afni, R. Jurusan, P. Kimia, F. Tarbiyah, K. Uin, S. Riau, J. Agroteknologi 4(2) (2014) 27—31. https://ejournal.uin-suska.ac.id/index.php/agroteknologi/article/view/1134.

P.C. Sharma, A. Gupta, P. Kaushal, Indian J. Nat. Prod. Resour. 5 (2014) 184—189.

https://dx.doi.org/http://op.niscpr.res.in/index.php/IJNPR/article/view/2182.

H. Nasution, H. Harahap, M.T. Al Fath, Y. Afandy, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2018. https://dx.doi.org/10.1088/1757-899X/309/1/012033.

R.V. Listyarini, P.R. Susilawati, E.N. Nukung, M.A.T. Yua, J. Kim. Sains Dan Apl. 23 (2020) 203—208. https://dx.doi.org/10.14710/jksa.23.6.203-208.

L. Maghfiroh, K.F. Hanum, E. Sedyadi, I. Nugraha, F.A. Nurlaili, Proceeding Int. Conf. Sci. Eng. 2 (2019) 201—205. https://dx.doi.org/10.14421/icse.v2.86.

S. Ranggana, Manual Analysis of Fruit and Vegetable Products, Tata McGraw-Hill, 1977. https://books.google.co.id/books/about/Manual_of_Analysis_of_Fruit_and_Vegetabl.html?id=i3ZGNQAACAAJ&redir_esc=y.

G.W. Pradana, A.M. Jacoeb, S. Ruddy, J. Pengolah. Has. Perikan. Indones. 20 (2017) 609—619. https://pdfs.semanticscholar.org/7cd0/119895e87ddd250b2516445f0270b5771fb0.pdf.

M.A. Budiman, Uju, K. Tarman, IOP Conf. Ser. Earth Environ. Sci. 967 (2022). https://dx.doi.org/10.1088/1755-1315/967/1/012012.

J.S. Yaradoddi, N.R. Banapurmath, S. V. Ganachari, M.E.M. Soudagar, A.M. Sajjan, S. Kamat, M.A. Mujtaba, A.S. Shettar, A.E. Anqi, M.R. Safaei, A. Elfasakhany, M.I.H. Siddiqui, M.A. Ali, J. Mater. Res. Technol. 17 (2021) 3186—3197. https://dx.doi.org/10.1016/j.jmrt.2021.09.016.

I.K. Sani, M. Alizadeh, Food Packag. Shelf Life 33 (2022) 100912. https://dx.doi.org/10.1016/j.fpsl.2022.100912.

M. Fazeli, R.A. Simão, Macromol. Symp. 380 (2018) 1—8. https://dx.doi.org/10.1002/masy.201800110.

D. Hassani, I.K. Sani, S. Pirsa, J. Polym. Environ. 32 (2024) 1972–1983. https://dx.doi.org/10.1007/s10924-023-03114-3.

Z. Farajinejad, I.K. Sani, M. Alizadeh, S. Amiri, J. Polym. Environ. (2023). https://dx.doi.org/10.1007/s10924-023-03159-4.

A. Syarifuddin, Yunianta, J. Pangan Dan Agroindustri 3 (2015) 1538—1547. https://jpa.ub.ac.id/index.php/jpa/article/view/278.

H. Eghbaljoo, M. Alizadeh Sani, I.K. Sani, S.M. Maragheh, D.K. Sain, Z.H. Jawhar, S. Pirsa, A. Kadi, R. Dadkhodayi, F. Zhang, S.M. Jafari, Crit. Rev. Food Sci. Nutr. (2023) 1—17. https://dx.doi.org/10.1080/10408398.2023.2280769.

Downloads

Published

08.03.2024 — Updated on 18.06.2024

Issue

Section

Articles

How to Cite

THE EFFECT OF GLYCEROL AND SAGO STARCH ADDITION ON THE CHARACTERISTICS OF BIOPLASTICS BASED ON ORANGE PEEL PECTIN: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(4), 359-365. https://doi.org/10.2298/CICEQ231214007A

Most read articles by the same author(s)