RELIABILITY-BASED DESIGN OPTIMIZATION OF SCREW SHAFT FOR CONTINUOUS HIGH-PRESSURE HYDROTHERMAL CO-LIQUEFACTION PROCESS

Original scientific paper

Authors

  • Chitra Devi Venkatachalam Department of Food Technology, Kongu Engineering College, Perundurai, Tamil Nadu – 638060, India https://orcid.org/0000-0001-8510-2249
  • Premkumar Bhuvaneshwaran Department of Food Technology, Kongu Engineering College, Perundurai, Tamil Nadu – 638060, India https://orcid.org/0000-0001-6835-5180
  • Mothil Sengottian Department of Chemical Engineering, Kongu Engineering College, Perundurai, Tamil Nadu – 638060, India https://orcid.org/0000-0001-6154-7526
  • Sathish Raam Ravichandran Department of Chemical Engineering, Kongu Engineering College, Perundurai, Tamil Nadu – 638060, India https://orcid.org/0000-0002-1394-1040

DOI:

https://doi.org/10.2298/CICEQ231124004V

Keywords:

Hydrothermal co-liquefaction, screw shaft, finite element method, stress analysis, goodman failure criteria, multi and single response optimization technique

Abstract

Hydrothermal co-liquefaction (HTCL) is the prominent process for producing bio-products with a higher conversion rate. It is performed at high temperatures and pressure in the presence of water. Earlier, it was mostly conducted in batch reactors, but it has major limitations including operating volume, back mixing, and tedious process for high productivity. With that, the present investigation is performed on designing the screw shaft for the high-pressure HTCL process. The dimensional factors including flight length, pitch, helix angle, and depth were considered to design the optimal screw shaft. Likewise, principal stresses, shear stress, bending stress, bending moment, and total deformation were regarded as inevitable response variables to analyze the internal strength of the shaft. In this regard, the Taguchi approach provides the L9 (34) orthogonal array as an experimental design. Then, the numerical results from the transient structural analysis were analyzed with the assistance of statistical methods such as Grey Relational Grade (GRG), Grey Fuzzy Reasoning Grade, Analysis of Variance (ANOVA), and Taguchi method to find the most influential dimensions for minimizing the response variable. Consequently, the results from both GRG and Taguchi optimization were compared, and selected the most optimum parameters.

References

C.D. Venkatachalam, S.R. Ravichandran, M. Sengottian, Environ. Eng. Res. 27(2021), 200555-200571. https://doi.org/10.4491/eer.2020.555.

F. Campuzano, R.C. Brown, J.D. Martínez, Renew. Sust. Energ. Rev. 102(2019), 372-409. https://doi.org/10.1016/j.rser.2018.12.014.

S.S. Toor, L.A. Rosendahl, A. Rudolf, Energy 36 (2011), 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013.

C.D. Venkatachalam, M. Sengottian, S.R. Ravichandran, K. Subramaniyan, P. Kalappan Thangamuthu, Period. Polytech. Chem. Eng. 65 (2020), 105-115. https://doi.org/10.3311/PPch.15187.

M.S. Wahyudiono, M. Goto, Fuel 88 (2009) 1656-1664. https://doi.org/10.1016/j.fuel.2009.02.028.

B. Miljkovic, Period. Polytech. Chem. Eng. 67 (2023) 62-73. https://doi.org/10.3311/PPch.20257.

M.S. Wahyudiono, M. Goto, Chem. Eng. Process 47 (2008) 1609-1619. https://doi.org/10.1016/j.cep.2007.09.001.

I.M. Sintamarean, I.F. Grigoras, C.U. Jensen, S.S. Toor, T.H. Pedersen, L.A. Rosendahl, Biomass Convers. Biorefin. 7 (2017) 425-435. https://doi.org/10.1007/s13399-017-0247-9.

P. Brassard, S. Godbout, V. Raghavan, J.H. Palacios, M. Grenier, D. Zegan, Energies 10 (2017) 288-302. https://doi.org/10.3390/en10030288.

G. Shengbo, Y. Peter Nai Yuh, C. Yoke Wang, X. Changlei, W.M. Wan Adibah, L. Rock Keey, P. Wanxi, Y. Tong-Qi, T. Meisam, A. Mortaza, S.k. Christian, L. Su Shiung, Renew. Sust. Energ. Rev. 135(2021) 110148-110162. https://doi.org/10.1016/j.rser.2020.110148.

C.E. Efika, C. Wu, P.T. Williams, J. Anal. Appl. Pyrolysis 95(2012) 87-94. https://doi.org/10.1016/j.jaap.2012.01.010.

S.K. Hoekman, A. Broch, L. Felix, W.E. Farthing, Energy Convers. Manag. 134(2017) 247-259. https://doi.org/10.1016/j.enconman.2016.12.035.

P. Evangelopoulos, H. Persson, E.K. Kantarelis, W. Yang, Process Saf. Environ. Prot. 143 (2020) 313-321. https://doi.org/10.1016/j.psep.2020.07.006.

S. Ge, P.N.Y. Yek, Y.W. Cheng, C. Xia, W.A.W. Mahari, R.K. Liew, P. Wanxi, Y. Tong-Qi, T. Meisam, A. Mortaza, S.k. Christian, L. Su Shiung, Renew. Sust. Energ. Rev. 135 (2021) 110148-110162. https://doi.org/10.1016/j.rser.2020.110148.

L. Halasz, Period. Polytech. Chem. Eng. 34 (1989) 173-196. https://pp.bme.hu/ch/article/view/2721.

A.Y. Doost, D.L. William, Sustainability 12 (2020) 7352-7385. https://doi.org/10.3390/su12187352.

M. Meise, L. Jäger, A. Wilk, T. Heitmann, S. Scholl, Chem. Ing. Tech. 92 (2020) 1074-1082. https://doi.org/10.1002/cite.202000092.

E.P. Bilalis, M.S. Keramidis, N.G. Tsouvalis, Mar. Struct. 84 (2022) 103194. https://doi.org/10.1016/j.marstruc.2022.103194.

S.P.S. Kumar, R. Rao, B.A. Rajeevalochanam, Procedia Eng. 55 (2013) 499-509. https://doi.org/10.1016/j.proeng.2013.03.287.

C. Moganapriya, R. Rajasekar, P. Sathish Kumar, T. Mohanraj, V.K. Gobinath, J. Saravanakumar, Struct. Multidiscip. Optim. 63 (2020) 1169-1186. https://doi.org/10.1007/s00158-020-02751-9.

S. Ajith Arul Daniel, R. Pugazhenthi, R. Kumar, S. Vijayananth, Def. Technol. 15 (2019) 545-556. https://doi.org/10.1016/j.dt.2019.01.001.

S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, Struct. Multidiscipl. Optim. 62 (2020) 1117-1133. https://doi.org/10.1007/s00158-020-02542-2.

F. Xiong, D. Wang, S. Zhang, K. Cai, S. Wang, F. Lu, Struct. Multidiscipl. Optim. 57 (2017) 441-461. https://doi.org/10.1007/s00158-017-1749-6.

W. Yao, K. Cai, Y. Xu, Optimizing the beam-like structure of a vehicle body using the grey–fuzzy–Taguchi method 53 (2020) 49-70. https://doi.org/10.1080/0305215X.2019.1698033.

M. Saleh, Z. Zaidi, M.H. Ionescu, C. Hurt, K. Short, J.E. Daniels, P. Munroe, L.E. Edwards, D. Bhattacharyya, Int. J. Plast. 86 (2016) 151-169. https://doi.org/10.1016/j.ijplas.2016.08.006.

V.A. Girisha, M.M. Joshi, L.J. Kirthan, A. Bharatish, R. Hegde, Sādhanā 44 (2019) 1-8. https://doi.org/10.1007/s12046-019-1111-3.

H. Kweon, J. Kim, O. Song, D. Oh, Nucl. Eng. Technol. 53 (2021) 647-656. https://doi.org/10.1016/j.net.2020.07.014.

B. Bozorgmehri, V.-V. Hurskainen, M. K. Matikainen, A. Mikkola, J. Sound Vib. 453 (2019) 214-236. https://doi.org/10.1016/j.jsv.2019.03.022.

R. Scheepers, P.S. Heyns, J. Mech. Sci. Technol. 30 (2016) 4063-4074. https://doi.org/10.1007/s12206-016-0819-9.

N.L. Pedersen, J. Strain Anal. Eng. 56 (2020) 195-205. https://doi.org/10.1177/0309324720969530.

O.A. Samuel, I.O. Bankole, O.I. Christianah, O.M.A. Adeyinka, F.K. Joseph, J. Mater. Res. 8 (2019) 105-111. https://doi.org/10.1016/j.jmrt.2017.10.007.

Á. Sass, A. Kummer, Z. Ulbert, A. Egedy, Period. Polytech. Chem. Eng. 65 (2021) 536-549. https://doi.org/10.3311/PPch.17095.

Z. Yongjie No, X. Hongmei No, Appl. Eng. Agric. 35 (2019) 453-460. https://https://doi.org/10.13031/aea.13351.

S. Seifoori, A. Mahdian Parrany, M. Khodayari, Eng. Fail. Anal. 116 (2020) 104752-104768. https://doi.org/10.1016/j.engfailanal.2020.104752.

L. Dao-Kui, L. Xian-Fang, Cr Mecanique 344 (2016) 556-568. https://doi.org/10.1016/j.crme.2016.01.007.

A. Roy, P. Palit, S. Das, G. Mukhyopadyay, Eng. Fail. Anal. 112 (2020) 104511-104526. https://doi.org/10.1016/j.engfailanal.2020.104511.

K. Cai, D. Wang, Struct. Multidiscipl. Optim. 56 (2017) 1539-1553. https://doi.org/10.1007/s00158-017-1728-y.

Q. Sawei, X. Zhigang, H. Hong, Y. Zhong, X. Erli, X. Congchang, L. Luoxing, Struct. Multidiscipl. Optim. 64 (2021) 4129–4145. https://doi.org/10.1007/s00158-021-03035-6.

A. Tanmaya, G. Raghvendra, A. Sudeekcha, S. Vishal, K. Manish, K. Saket, Sustain. Futures 2 (2020) 100039-100050. https://doi.org/10.1016/j.sftr.2020.100039.

X. Deng, S. Wang, H. Youssef, L. Qian, Y. Liu, Struct. Multidiscipl. Optim. 62 (2020) 2833-2847. https://doi.org/10.1007/s00158-020-02640-1.

D. Sunil, R.N. Suresh Kumar, Measurement 169 (2021) 108340-108347. https://doi.org/10.1016/j.measurement.2020.108340.

B. Maël, B. Johan, V. Laura, R.-C. Ainhoa, C. Edwin, Renew. Energy. 172 (2021) 941-954. https://doi.org/10.1016/j.renene.2021.03.076.

M.A. Perras, H. Wannenmacher, M.S. Diederichs, Rock Mech. Rock Eng. 48 (2014) 1647-1671. https://doi.org/10.1007/s00603-014-0656-z.

W. Zhang, J. Yang, C. Li, R. Dai, A. Yang, J. Vib. Control 23 (2016) 1183-1192. https://doi.org/10.1177/1077546315590908.

Published

27.02.2024 — Updated on 18.06.2024

Issue

Section

Articles

How to Cite

RELIABILITY-BASED DESIGN OPTIMIZATION OF SCREW SHAFT FOR CONTINUOUS HIGH-PRESSURE HYDROTHERMAL CO-LIQUEFACTION PROCESS: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(4), 335-348. https://doi.org/10.2298/CICEQ231124004V

Funding data

Similar Articles

21-30 of 105

You may also start an advanced similarity search for this article.