RELIABILITY-BASED DESIGN OPTIMIZATION OF SCREW SHAFT FOR CONTINUOUS HIGH-PRESSURE HYDROTHERMAL CO-LIQUEFACTION PROCESS
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ231124004VKeywords:
Hydrothermal co-liquefaction, screw shaft, finite element method, stress analysis, goodman failure criteria, multi and single response optimization techniqueAbstract
Hydrothermal co-liquefaction (HTCL) is the prominent process for producing bio-products with a higher conversion rate. It is performed at high temperatures and pressure in the presence of water. Earlier, it was mostly conducted in batch reactors, but it has major limitations including operating volume, back mixing, and tedious process for high productivity. With that, the present investigation is performed on designing the screw shaft for the high-pressure HTCL process. The dimensional factors including flight length, pitch, helix angle, and depth were considered to design the optimal screw shaft. Likewise, principal stresses, shear stress, bending stress, bending moment, and total deformation were regarded as inevitable response variables to analyze the internal strength of the shaft. In this regard, the Taguchi approach provides the L9 (34) orthogonal array as an experimental design. Then, the numerical results from the transient structural analysis were analyzed with the assistance of statistical methods such as Grey Relational Grade (GRG), Grey Fuzzy Reasoning Grade, Analysis of Variance (ANOVA), and Taguchi method to find the most influential dimensions for minimizing the response variable. Consequently, the results from both GRG and Taguchi optimization were compared, and selected the most optimum parameters.
References
C.D. Venkatachalam, S.R. Ravichandran, M. Sengottian, Environ. Eng. Res. 27(2021), 200555-200571. https://doi.org/10.4491/eer.2020.555.
F. Campuzano, R.C. Brown, J.D. Martínez, Renew. Sust. Energ. Rev. 102(2019), 372-409. https://doi.org/10.1016/j.rser.2018.12.014.
S.S. Toor, L.A. Rosendahl, A. Rudolf, Energy 36 (2011), 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013.
C.D. Venkatachalam, M. Sengottian, S.R. Ravichandran, K. Subramaniyan, P. Kalappan Thangamuthu, Period. Polytech. Chem. Eng. 65 (2020), 105-115. https://doi.org/10.3311/PPch.15187.
M.S. Wahyudiono, M. Goto, Fuel 88 (2009) 1656-1664. https://doi.org/10.1016/j.fuel.2009.02.028.
B. Miljkovic, Period. Polytech. Chem. Eng. 67 (2023) 62-73. https://doi.org/10.3311/PPch.20257.
M.S. Wahyudiono, M. Goto, Chem. Eng. Process 47 (2008) 1609-1619. https://doi.org/10.1016/j.cep.2007.09.001.
I.M. Sintamarean, I.F. Grigoras, C.U. Jensen, S.S. Toor, T.H. Pedersen, L.A. Rosendahl, Biomass Convers. Biorefin. 7 (2017) 425-435. https://doi.org/10.1007/s13399-017-0247-9.
P. Brassard, S. Godbout, V. Raghavan, J.H. Palacios, M. Grenier, D. Zegan, Energies 10 (2017) 288-302. https://doi.org/10.3390/en10030288.
G. Shengbo, Y. Peter Nai Yuh, C. Yoke Wang, X. Changlei, W.M. Wan Adibah, L. Rock Keey, P. Wanxi, Y. Tong-Qi, T. Meisam, A. Mortaza, S.k. Christian, L. Su Shiung, Renew. Sust. Energ. Rev. 135(2021) 110148-110162. https://doi.org/10.1016/j.rser.2020.110148.
C.E. Efika, C. Wu, P.T. Williams, J. Anal. Appl. Pyrolysis 95(2012) 87-94. https://doi.org/10.1016/j.jaap.2012.01.010.
S.K. Hoekman, A. Broch, L. Felix, W.E. Farthing, Energy Convers. Manag. 134(2017) 247-259. https://doi.org/10.1016/j.enconman.2016.12.035.
P. Evangelopoulos, H. Persson, E.K. Kantarelis, W. Yang, Process Saf. Environ. Prot. 143 (2020) 313-321. https://doi.org/10.1016/j.psep.2020.07.006.
S. Ge, P.N.Y. Yek, Y.W. Cheng, C. Xia, W.A.W. Mahari, R.K. Liew, P. Wanxi, Y. Tong-Qi, T. Meisam, A. Mortaza, S.k. Christian, L. Su Shiung, Renew. Sust. Energ. Rev. 135 (2021) 110148-110162. https://doi.org/10.1016/j.rser.2020.110148.
L. Halasz, Period. Polytech. Chem. Eng. 34 (1989) 173-196. https://pp.bme.hu/ch/article/view/2721.
A.Y. Doost, D.L. William, Sustainability 12 (2020) 7352-7385. https://doi.org/10.3390/su12187352.
M. Meise, L. Jäger, A. Wilk, T. Heitmann, S. Scholl, Chem. Ing. Tech. 92 (2020) 1074-1082. https://doi.org/10.1002/cite.202000092.
E.P. Bilalis, M.S. Keramidis, N.G. Tsouvalis, Mar. Struct. 84 (2022) 103194. https://doi.org/10.1016/j.marstruc.2022.103194.
S.P.S. Kumar, R. Rao, B.A. Rajeevalochanam, Procedia Eng. 55 (2013) 499-509. https://doi.org/10.1016/j.proeng.2013.03.287.
C. Moganapriya, R. Rajasekar, P. Sathish Kumar, T. Mohanraj, V.K. Gobinath, J. Saravanakumar, Struct. Multidiscip. Optim. 63 (2020) 1169-1186. https://doi.org/10.1007/s00158-020-02751-9.
S. Ajith Arul Daniel, R. Pugazhenthi, R. Kumar, S. Vijayananth, Def. Technol. 15 (2019) 545-556. https://doi.org/10.1016/j.dt.2019.01.001.
S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, Struct. Multidiscipl. Optim. 62 (2020) 1117-1133. https://doi.org/10.1007/s00158-020-02542-2.
F. Xiong, D. Wang, S. Zhang, K. Cai, S. Wang, F. Lu, Struct. Multidiscipl. Optim. 57 (2017) 441-461. https://doi.org/10.1007/s00158-017-1749-6.
W. Yao, K. Cai, Y. Xu, Optimizing the beam-like structure of a vehicle body using the grey–fuzzy–Taguchi method 53 (2020) 49-70. https://doi.org/10.1080/0305215X.2019.1698033.
M. Saleh, Z. Zaidi, M.H. Ionescu, C. Hurt, K. Short, J.E. Daniels, P. Munroe, L.E. Edwards, D. Bhattacharyya, Int. J. Plast. 86 (2016) 151-169. https://doi.org/10.1016/j.ijplas.2016.08.006.
V.A. Girisha, M.M. Joshi, L.J. Kirthan, A. Bharatish, R. Hegde, Sādhanā 44 (2019) 1-8. https://doi.org/10.1007/s12046-019-1111-3.
H. Kweon, J. Kim, O. Song, D. Oh, Nucl. Eng. Technol. 53 (2021) 647-656. https://doi.org/10.1016/j.net.2020.07.014.
B. Bozorgmehri, V.-V. Hurskainen, M. K. Matikainen, A. Mikkola, J. Sound Vib. 453 (2019) 214-236. https://doi.org/10.1016/j.jsv.2019.03.022.
R. Scheepers, P.S. Heyns, J. Mech. Sci. Technol. 30 (2016) 4063-4074. https://doi.org/10.1007/s12206-016-0819-9.
N.L. Pedersen, J. Strain Anal. Eng. 56 (2020) 195-205. https://doi.org/10.1177/0309324720969530.
O.A. Samuel, I.O. Bankole, O.I. Christianah, O.M.A. Adeyinka, F.K. Joseph, J. Mater. Res. 8 (2019) 105-111. https://doi.org/10.1016/j.jmrt.2017.10.007.
Á. Sass, A. Kummer, Z. Ulbert, A. Egedy, Period. Polytech. Chem. Eng. 65 (2021) 536-549. https://doi.org/10.3311/PPch.17095.
Z. Yongjie No, X. Hongmei No, Appl. Eng. Agric. 35 (2019) 453-460. https://https://doi.org/10.13031/aea.13351.
S. Seifoori, A. Mahdian Parrany, M. Khodayari, Eng. Fail. Anal. 116 (2020) 104752-104768. https://doi.org/10.1016/j.engfailanal.2020.104752.
L. Dao-Kui, L. Xian-Fang, Cr Mecanique 344 (2016) 556-568. https://doi.org/10.1016/j.crme.2016.01.007.
A. Roy, P. Palit, S. Das, G. Mukhyopadyay, Eng. Fail. Anal. 112 (2020) 104511-104526. https://doi.org/10.1016/j.engfailanal.2020.104511.
K. Cai, D. Wang, Struct. Multidiscipl. Optim. 56 (2017) 1539-1553. https://doi.org/10.1007/s00158-017-1728-y.
Q. Sawei, X. Zhigang, H. Hong, Y. Zhong, X. Erli, X. Congchang, L. Luoxing, Struct. Multidiscipl. Optim. 64 (2021) 4129–4145. https://doi.org/10.1007/s00158-021-03035-6.
A. Tanmaya, G. Raghvendra, A. Sudeekcha, S. Vishal, K. Manish, K. Saket, Sustain. Futures 2 (2020) 100039-100050. https://doi.org/10.1016/j.sftr.2020.100039.
X. Deng, S. Wang, H. Youssef, L. Qian, Y. Liu, Struct. Multidiscipl. Optim. 62 (2020) 2833-2847. https://doi.org/10.1007/s00158-020-02640-1.
D. Sunil, R.N. Suresh Kumar, Measurement 169 (2021) 108340-108347. https://doi.org/10.1016/j.measurement.2020.108340.
B. Maël, B. Johan, V. Laura, R.-C. Ainhoa, C. Edwin, Renew. Energy. 172 (2021) 941-954. https://doi.org/10.1016/j.renene.2021.03.076.
M.A. Perras, H. Wannenmacher, M.S. Diederichs, Rock Mech. Rock Eng. 48 (2014) 1647-1671. https://doi.org/10.1007/s00603-014-0656-z.
W. Zhang, J. Yang, C. Li, R. Dai, A. Yang, J. Vib. Control 23 (2016) 1183-1192. https://doi.org/10.1177/1077546315590908.
Published
Issue
Section
License
Copyright (c) 2023 Chitra Devi Venkatachalam, Premkumar Bhuvaneshwaran, Mothil Sengottian, Sathish Raam Ravichandran
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Department of Science and Technology, Ministry of Science and Technology, India
Grant numbers DST/TDT/WMT/Plastic Waste/2021/08(G)&(C)