THE MAGNETOHYDRODYNAMIC WILLIAMSON FLUID FLOW ON AN EXTENDING SHEET WITH THERMOPHORESIS AND CHEMICAL REACTION

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ230928005N

Keywords:

Williamson fluid, magnetohydrodynamics, chemical reaction, thermophoresis

Abstract

This research investigates the steady, two-dimensional, incompressible flow of a pseudoplastic Williamson fluid subjected to a linearly stretched sheet. The study incorporates the effects of magnetic fields, chemical reactions, and thermophoresis on fluid behavior. By applying boundary layer techniques and similarity transformations, the governing equations are simplified for numerical analysis. The MATLAB bvp4c solver is employed to solve the reduced equations. The obtained results are visually represented and thoroughly discussed to comprehend the model's physical characteristics. The investigation highlights the magnetic field's influence, chemical reaction, and impact of thermophoresis particle deposition on the flow behavior of Williamson fluid over the extended sheet. Moreover, significant roles are found for chemical reactions and thermophoresis parameters in determining the fluid concentration near the boundary layer. It is observed that an increase in the chemical reactions and thermophoresis parameters results in a reduced thickness of the fluid concentration near the boundary layer. Notably, an increase in Schmidt value also diminished the thickness of the fluid concentration close to the boundary layer. The magnetohydrodynamic parameter significantly influences the fluid's velocity and temperature near the surface. It has been noted that an increase in the magnetohydrodynamic parameter decreases the fluid’s velocity and increases the temperature near the surface. The impact of skin friction coefficient and Nusselt number and the impact of mass transfer coefficient on Williamson fluid will be discussed. The findings acquired are examined in relation to existing research and the correlation is provided as a table.

References

R.V. Williamson, Ind. Eng. Chem. Res. 21(1929) 1108—1111. https://doi.org/10.1021/ie50239a035.

B.C. Sakiadis, AIChe J. 7 (1961) 26—28. https://doi.org/10.1002/aic.690070108.

F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Int. J. Heat Mass Transfer 10 (1967) 219—235. https://doi.org/10.1016/0017-9310(67)90100-7.

L.E. Erickson, L.T. Fan., V.G. Fox, Ind. Eng. Chem. 5 (1966) 19—25. https://doi.org/10.1021/i160017a004.

S. Nadeem, S.T. Hussain, C. LeeBraz. J. Chem. Eng. 30(3) (2013) 619—625. https://doi.org/10.1590/S0104-66322013000300019.

T. Hayat, A. Shafiq, A. Alsaedi, Alexandria Eng. J. 55(3) (2016) 2229—2240. https://doi.org/10.1016/j.aej.2016.06.004.

H.M. Shawky, N.T. Eldabe, K.A. Kamel, E.A. Abd-Aziz, Microsyst. Technol. 25(4) (2018) 1155—1169. https://doi.org/10.1007/s00542-018-4081-1.

S. Nadeem, S.T. Hussain, Appl. Nanosci. 4(8) (2014) 1005—1012. https://doi.org/10.1007/s13204-013-0282-1.

S. Nadeem, S.T. Hussain, J. Appl. Fluid Mech. 9 (2) (2016) 729—739. https://doi.org/10.18869/acadpub.jafm.68.225.21487.

T. Kebede, E. Haile, G. Awgichew, T. Waleign, J. Appl. Math. 2020 (2020) 1—13. https://doi.org/10.1155/2020/1890972.

I.C. Liu, Int. Commun. Heat Mass Transfer 32 (8) (2005) 1075—1084. https://doi.org/10.1016/j.icheatmasstransfer.2005.02.003.

M.A.A. Hammad, M. Ferdows, Appl. Math. Mech. 33 (7) (2012) 923—930. https://doi.org/10.1007/s10483-012-1595-7.

F.M. Ali, R. Nazar, N.M. Arifin, I. Pop, Appl. Math. Mech. 32 (4) (2011) 409—418. https://doi.org/10.1007/s10483-011-1426-6.

V. Kumaran, G. Ramanaiah, Acta Mech. 116 (1—4) (1996) 229—233. https://doi.org/10.1007/BF01171433.

M.E. Ali, Int. J. Heat Mass Transfer 16 (1995) 280—290. https://doi.org/10.1016/0142-727X(95)00001-7.

E.M.A. Elbashbeshy, Arch. Mech. 53 (6) (2001) 643—651. https://am.ippt.pan.pl/am/article/viewFile/v53p643/pdf.

E. Sanjayanand, S.K. Khan, Int. J. Therm. Sci. 45 (2006) 819—828. https://doi.org/10.1016/j.ijthermalsci.2005.11.002.

E. Magyari, B. Keller, J. Phys. D: Appl. Phys. 32 (1999) 577—585. http://doi.org/10.1007/s002310000126.

S. Nadeem, S. Zaheer, T. Fang, Numer. Algorithms 57 (2011) 187—205. http://dx.doi.org/10.1007/s11075-010-9423-8.

E.Sanjayanand, S. K. Khan, Intl. J. Therm. Sci. 45, (2006) 819—828. https://doi.org/10.1016/j.ijthermalsci.2005.11.002.

E. Magyari, and B. Keller, J. Physics D: Appl. Physics, 32, (1999) 577—585. http://dx.doi.org/10.1088/0022-3727/32/5/012.

S. Nadeem, S. Zaheer, T. Fang, Numer. Algorithms 57, (2011) 187—205. http://dx.doi.org/10.1007/s11075-010-9423-8.

S. Nadeem, C. Lee, Nanoscale Res. Lett. 7, (2012) 94 https://doi.org/10.1186/1556-276X-7-94.

M.S. Arif, K. Abodayeh, Y. Nawaz, Axioms,12(5), (2023) 460, https://doi.org/10.3390/axioms12050460.

Y. Nawaz, M.S. Arif, K. Abodayeh, Int. J. Numer. Methods Fluids, 94 (7), (2022) 920—940. https://doi.org/10.1002/fld.5078.

P. Loganathan, N.G. Stepha, J. Appl. Fluid Mech, 6(4), (2013) 581—588. 10.36884/JAFM.6.04.21276.

M. Ismail, D.M. Gururaj, Heat Transf. 50(4) (2021), 4019—4038 https://doi.org/10.1002/htj.22062.

M. Ismail, D.M. Gururaj, J. Nanofluids, 12 (3), (2023), 809—818. https://doi.org/10.1166/jon.2023.1962.

M. Ismail, D.M. Gururaj, Numer. Heat Transf. B: Fundam. (2023) 1—27. https://doi.org/10.1080/10407790.2023.2257381.

P. Loganathan, N. Golden Stepha, Asia Pac. J. Chem. Eng. 8(6) (2013), 870—879 https://doi.org/10.1002/apj.1732.

L.E. Erickson, L.T Fan, V.G. Fox, Ind. Eng. Chem. Fundam. 5(1), (1966), 19—25. https://doi.org/10.1021/i160017a004.

V.K. Garg, S. Jayaraj. Int. J. Heat Mass Transfer, 31 (1998) 875—890. https://doi.org/10.1016/0017-9310(88)90144-5.

N.A. Khan, H. Khan, Nonlinear Eng. 3(2), (2014)107—115. https://doi.org/10.1515/nleng-2014-0002.

H. Maaitah, A.N. Olimat, O. Quran, H.M. Duwairi, Int. J. Thermofluids, 19 (2023) 100361. https://doi.org/10.1016/j.ijft.2023.100361.

A.M. Megahed, IJMPC, 31(1), (2020) 2050019. http://doi.org/10.1142/S0129183120500199.

Downloads

Published

27.02.2024 — Updated on 18.06.2024

Issue

Section

Articles

How to Cite

THE MAGNETOHYDRODYNAMIC WILLIAMSON FLUID FLOW ON AN EXTENDING SHEET WITH THERMOPHORESIS AND CHEMICAL REACTION: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(4), 325-333. https://doi.org/10.2298/CICEQ230928005N

Similar Articles

31-40 of 105

You may also start an advanced similarity search for this article.