INFLUENCE OF MAIN PRODUCTION VARIABLES ON NUTRITIONAL CHARACTERISTICS OF WINERY EFFLUENT KOMBUCHA

Original scientific paper

Authors

  • Stefan Vukmanović University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-0373-294X
  • Jasmina Vitas University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; https://orcid.org/0000-0002-6761-1880
  • Snežana Kravić University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0003-4056-2000
  • Zorica Stojanović University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0001-8892-3157
  • Ana Đurović University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-3091-1898
  • Biljana Cvetković University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0003-4984-0564
  • Radomir Malbaša University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0003-0230-4852

DOI:

https://doi.org/10.2298/CICEQ231002001V

Keywords:

kombucha, nutrient utilisation, sugars, nitrogen, phosphorus

Abstract

Determination of sugar, nitrogen, and phosphorus consumption by kombucha culture is necessary to gain additional insight into the kombucha metabolic pathways and nutritional value of the produced beverages and to set a basis for optimizing the conditions for large-scale production. Kombucha beverage was made using effluent obtained from grape must clarification phase of white wine production. The fermentation medium was prepared by diluting the sterilized initial medium with approximately 16% of total reducing sugars to 3, 5, and 7% of total reducing sugars. The duration of the fermentation was nine days at 20, 25, and 30 °C. Sugars, nitrogen, and phosphorus content were measured using DNS, Kjeldahl, and molybdenum blue methods, respectively. The highest sugar content was in the initial medium (16.34%) and the lowest was after nine days of fermentation at 30 °C with 3% initial sugar content (0.17%). Residual levels of sugars, nitrogen, and phosphorus after three days were modeled using response surface methodology. The proposed mathematical models for sugars and nitrogen content showed an exceptional correlation with the experimentally obtained values. With this study insight into kombucha’s consumption of basic nutrients, nutritional value of the obtained products, and optimization of product composition was provided.

References

D. Laureys, S.J. Britton, J. De Clippeleer, J. Am. Soc. Brew. Chem. (2020) 165—174. https://doi.org/10.1080/03610470.2020.1734150.

R. Jayabalan, R.V. Malbaša, E.S. Lončar, J.S. Vitas, M. Sathishkumar, Compr. Rev. Food Sci. Food Saf. 13 (2014) 538—550. https://doi.org/10.1111/1541-4337.12073.

J.S. Vitas, S. Vukmanović, J. Čakarević, L. Popović, R. Malbaša, Chem. Ind. Chem. Eng. Q. 26 (2020) 157—170. https://doi.org/10.2298/ciceq190708034v.

N.H. Avcioglu, M. Birben, I. Seyis Bilkay, Process. Biochem. 108 (2021) 60—68. https://doi.org/10.1016/j.procbio.2021.06.005.

A. Sknepnek, S. Tomić, D. Miletić, S. Lević, M. Čolić, V. Nedović, M. Nikšić, Food Chem. 342 (2021) 128344. https://doi.org/10.1016/j.foodchem.2020.128344.

B.M. Bortolomedi, C.S. Paglarini, F.C.A. Brod, Food Chem. 385 (2022) 132719. https://doi.org/10.1016/j.foodchem.2022.132719.

C. Chen, B.Y. Liu, J. Appl. Microbiol. 89 (2000) 834—839. https://doi.org/10.1046/j.1365-2672.2000.01188.x.

R. Vijayaraghavan, M. Singh, P.V. Rao, R. Bhattacharya, P. Kumar, K. Sugendran, O. Kumar, S.C. Pant, R. Singh, Biomed. Environ. Sci. 13 (2000) 293—299. https://pubmed.ncbi.nlm.nih.gov/11351863/.

G.Ö. Sinir, C.E. Tamer, S. Suna, in Fermented Beverages, A.M. Grumezescu, A.M.Holban Eds., Woodhead Publishing, Sawston (2019) pp. 401—432. https://doi.org/10.1016/B978-0-12-815271-3.00010-5.

P. Bishop, E.R. Pitts, D. Budner, K.A. Thompson-Witrick, Food Chem. Adv. 1 (2022) 100025. https://doi.org/10.1016/j.focha.2022.100025.

W.M. Kliewer, Am. J. Enol. Vitic. 18 (1967) 33—41. https://doi.org/10.5344/ajev.1967.18.1.33.

J. Reiss, Z. Lebensm.-Unters. Forsch. 198 (1994) 258—261. https://doi.org/10.1007/BF01192606.

G. Hanrahan, G. Chan, in Encyclopedia of Analytical Science, 2nd Edition, P. Worsfold, A. Townshend, C. Poole Eds., Elsevier, Amsterdam (2004), pp. 191—196. ISBN-10: 0127641009.

D. Dutta, R. Gachhui, Int. J. Syst. Evol. Microbiol. 57 (2007) 353—357. https://doi.org/10.1099/ijs.0.64638-0.

J. Li, G. Chen, R. Zhang, H. Wu, W. Zeng, Z. Liang, Biotechnol. Appl. Biochem. 66 (2019) 108—118. https://doi.org/10.1002/bab.1703.

Recommended Dietary Allowances, 10th Edition, National Academies of Sciences, Engineering, and Medicine, The National Academies Press, Washington (1989). https://doi.org/10.17226/1349.

I.D. McKelvie, A. Lyddy-Meaney, in Encyclopedia of Analytical Science, 2nd Edition, P. Worsfold, A.Townshend, C. Poole Eds., Elsevier, Amsterdam (2004), pp. 167—173. ISBN-10: 0127641009.

H. Robles, in Encyclopedia of Toxicology, 3rd Edition, P. Wexler Ed., Academic Press, Amsterdam (2014), pp. 920—921. ISBN: 9780123864550.

Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes National Academies Press (US), Washington (DC) (1997) https://doi.org/10.17226/5776.

S. Markov, R. Malbaša, M. Hauk, D. Cvetković, Acta Period. Technol. 32 (2001) 133—138. http://scindeks-clanci.ceon.rs/data/pdf/1450-7188/2001/1450-71880132133m.pdf.

S. Markov, D. Cvetković, A. Velićanski, Arch. Biol. Sci. 64 (2012) 1439-1447. https://doi.org/10.2298/ABS1204439M.

G.L. Miller, Anal. Chem. 31 (1959) 426—428. https://doi.org/10.1021/ac60147a030.

R.S. Jackson, in Wine Science: Principles and Applications, 4th Edition, R.S. Jackson, Ed., Academic Press, San Diego (2014), pp. 69—141, ISBN: 978-0-12-381468-5.

R.S. Jackson, in Wine Science: Principles and Applications, 4th Edition, R.S. Jackson, Ed., Academic Press, San Diego (2014), pp. 347—426. ISBN: 978-0-12-381468-5.

S. Kravić, Z. Stojanović, Analiza hrane, vode, zemljišta, vazduha u predmeta opšte upotrebe - praktikum, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, Novi Sad, Serbia (in Serbian) (2016), pp. 18—24, pp. 54—60. ISBN: 978-86-6253-062-2.

J. Trajković, J. Baras, M. Mirić, S. Šiler, Analize životnih namirnica, Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd, Jugoslavija (in Serbian) (1983), pp. 75—80.

P. Blanc, Biotechnol. Lett. 18 (1996) 139—142. https://doi.org/10.1007/BF00128667.

Y.A. Ramírez Tapias, M.V. Di Monte, M.A. Peltzer, A.G. Salvay, Food Chem. 372 (2022) 131346. https://doi.org/10.1016/j.foodchem.2021.131346.

T. Aung, J.B. Eun, LWT - Food Sci. Technol. 154 (2022) 112643. https://doi.org/10.1016/j.lwt.2021.112643.

E. Leonarski, K. Cesca, E. Zanella, B.U. Stambuk, D. de Oliveira, P. Poletto, LWT - Food Sci. Technol. 135 (2021) 110075. https://doi.org/10.1016/j.lwt.2020.110075.

S. Varjani, W. Yan, A. Priya, F. Xin, C.S.K. Lin, Curr. Opin. Green Sustain. Chem. 41 (2023) 100806. https://doi.org/10.1016/j.cogsc.2023.100806.

S. Vukmanović, J. Vitas, A. Ranitović, D. Cvetković, A. Tomić, R. Malbaša, LWT - Food Sci. Technol. 154 (2022) 112726. https://doi.org/10.1016/j.lwt.2021.112726.

P. Sharma, V.K. Gaur, R. Sirohi, S. Varjani, S.H. Kim, J.W.C. Wong, Bioresour. Technol. 325 (2021) 124684. https://doi.org/10.1016/j.biortech.2021.124684.

https://ods.od.nih.gov/factsheets/Phosphorus-HealthProfessional/ [accessed 28 May 2023].

M.I. Kluz, K. Pietrzyk, M. Pastuszczak, M. Kacaniova, A. Kita, I. Kapusta, G. Zaguła, E. Zagrobelna, K. Struś, K. Marciniak-Lukasiak, J. Stanek-Tarkowska, A.V. Timar, C.

Puchalski, Foods 11 (2022) 1523. https://doi.org/10.3390/FOODS11101523.

R.K. Jadhav, Int. J. Bioassays 4.9 (2015) 4329—4332. https://www.ijbio.com/articles/distribution-of-ash-calcium-and-phosphorus-in-the-byproducts-of-green-crop-fractionation.pdf.

A.N. Hall, I. Husain, K.S. Tiwari, T. K. Walker, J. Appl. Bacteriol. 19 (1956) 31—35. https://doi.org/10.1111/j.1365-2672.1956.tb00040.x.

J.R. Broach, Genet. 192 (2012) 73—105. https://doi.org/ 10.1534/genetics.111.135731.

V.E. Agbazue, A. Ibezim, N.R. Ekere, Int. J. Chem. Sci. 12 (2014) 327—334. https://www.tsijournals.com/articles/assessment-of-sugar-levels-in-different-soft-drinks.pdf.

Downloads

Published

18.01.2024 — Updated on 18.06.2024

Issue

Section

Articles

How to Cite

INFLUENCE OF MAIN PRODUCTION VARIABLES ON NUTRITIONAL CHARACTERISTICS OF WINERY EFFLUENT KOMBUCHA: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(4), 285-294. https://doi.org/10.2298/CICEQ231002001V

Funding data

Most read articles by the same author(s)