HEAT TRANSFER PERFORMANCE OF AN Al2O3-WATER-METHANOL NANOFLUID IN A PLATE HEAT EXCHANGER
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ230726028MKeywords:
base fluid, heat transfer, methanol, nanofluid, plate heat exchangerAbstract
A plate heat exchanger is one of the smallest and most efficient heat exchangers on the market. This experiment aims to assess the performance of methanol-water as a base fluid in a plate heat exchanger that affects the heat transfer performance. For this study, aluminum oxide (Al2O3) nanoparticle was used in various ratios (0.25, 0.5, and 0.75 vol. %) in a base fluid (10 vol.% methanol & 90 vol.% water) to prepare a nanofluid. At two different temperatures, such as 55 °C and 60 °C, with varying flow rates (2 to 8 L/min) and varying nanoparticle concentrations (0.25 to 0.75%), thermo physical characteristics and convective heat transfer studies were performed, and the results are presented. The overall inference was that there was a notable enhancement in the hot side, cold side, and overall heat transfer coefficient by the combination of Al2O3 nanoparticle and methanol-water-based fluid. It was noted that utilizing Al2O3/methanol-water nanofluid could significantly reduce the temperature gradient in the heat exchanger and improve its performance. Maximum hot fluid coefficient of 4300 W/m2°C, cold fluid coefficient of 4600 W/m2°C, and overall coefficient of 2200 W/m2°C were noted for 0.75 vol.% nanoparticle concentration and at a flow rate of 8 L/min.
References
S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280—289. https://doi.org/10.1115/1.2825978.
M. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038—1054. https://doi.org/10.1016/j.rser.2010.11.035.
T. Mare, S. Halelfadl, S. Duret, P. Estelle, Exp. Therm. Fluid Sci. 35 (2011) 1535—1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.
D. Huang, Z. Wu, B. Sunden, Int. J. Heat Mass Transfer 89 (2015) 620—626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.
S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341—352. https://doi.org/10.2298/HEMIND210520031S.
S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317—322. https://doi.org/10.3311/PPch.11676.
M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.
B. Mehta, D. Subhedar, H. Panchal, Z. Said, J. Mol. Liq. 56 (2022) 120034, p.120034. https://doi.org/10.1016/j.molliq.2022.120034.
B. Mehta, D. Subhedar, Mater. Today: Proc. 56 (2022) 2031—2037. https://doi.org/10.1016/j.matpr.2021.11.374.
Y.H. Kwon, D. Kim, L. Chengguo, J.K. Lee, J. Nanosci. Nanotechnol. 11 (2011) 5769—5774. https://doi.org/10.1166/jnn.2011.4399.
S. Zeinali Heris, H. Taofik, H. Nassan, S. H. Noie, H. Sardarabadi, M. Sardarabadi, Int. J. Heat Fluid Flow 44 (2013) 375—382. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.
B. Sahin, E. Manay, E. F. Akyurek, J. Nanomater. 2015 (2015) 1—10. https://doi.org/10.1155/2015/790839.
I. Rashidi, O. Mahian, G. Lorenzini, C. Biserni, S.
Wongwises, Int. J. Heat Mass Transfer 74 (2014) 391—402. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030.
D. Wen, Y. Ding, Int. J. Heat Mass Transfer 47 (2004) 5181—5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012.
L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 44 (2013) 7—14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014.
S.D. Pandey, V.K. Nema, Exp. Therm. Fluid Sci. 38 (2012) 248—256. https://doi.org/10.1016/j.expthermflusci.2011.12.013.
P.V. Durga Prasad, S. Gupta, M. Sreeramulu, L.S. Sundar, M.K. Singh, A.C.M. Sousa, Exp. Therm. Fluid Sci. 62 (2015) 141—150. https://doi.org/10.1016/j.expthermflusci.2014.12.006.
S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. 28 (2022) 95—101. https://doi.org/10.2298/CICEQ210125021M.
S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Superlattices Microstruct. 35 (2004) 543—557. https://doi.org/10.1016/j.spmi.2003.09.012.
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309—318. https://doi.org/10.2298/CICEQ170720003M.
S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, G. Thiyagarajan, G. Sivasubramani, B. Moulidharan, Chem. Ind. Chem. Eng. Q. 29 (2023) 225—233. https://doi.org/10.2298/CICEQ220430029S.
W. Ajeeb, R.R.T. da Silva, S.S. Murshed, S.S., Appl. Therm. Eng. 218 (2023) 119321. https://doi.org/10.1016/j.applthermaleng.2022.119321.
X. Wang, X. Xu, J. Thermophys. Heat Transfer 13 (1999) 474—480. https://doi.org/10.2514/2.6486.
S. Singh, S.K. Ghosh, Int. J. Numer. Methods Heat Fluid Flow 32 (2022) 2750—2777. https://doi.org/10.1108/HFF-08-2021-0580.
M.M. Sarafraz, Chem. Biochem. Eng Q. 30 (2017) 489—500. https://doi.org/10.15255/CABEQ.2015.2203.
C. Pang, J.Y. Jung, Y.T. Kang, Int. J. Heat Mass Transfer 56 (2013) 94—100. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.031.
S. Kumar, S.K. Singh, D. Sharma, Heat Transfer Eng. 44 (2023) 1703—1718. https://doi.org/10.1080/01457632.2022.2148342.
E. Firouzfar, M. Soltanieh, S.H. Noie, S.H. Saidi, Appl. Therm. Eng. 31 (2011) 1543—1545. https://doi.org/10.1016/j.applthermaleng.2011.01.029.
W. Ajeeb, S.S. Murshed, S.S., Nanomaterials 12 (2022) 3634. https://doi.org/10.3390/nano12203634.
B. Mehta, D. Subhedar, Mater. Today: Proc. 62 (2022) 418—425. https://doi.org/10.1016/j.matpr.2022.01.448.
B. Mehta, D. Subhedar, H. Panchal, K.K. Sadasivuni, Int. J. Thermofluids 20 (2023) 100410. https://doi.org/10.1016/j.ijft.2023.100410.
X. Yang, Y. Yan, D. Mullen, Appl. Therm. Eng. 33—34 (2012) 1—14. https://doi.org/10.1016/j.applthermaleng.2011.09.006.
M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.
N. Dharmakkan, P.M. Srinivasan, S. Muthusamy, A. Jomde, S. Shamkuwar, C. Sonawane, H. Panchal, Case Studies in Thermal Engineering 44 (2023) 102805. https://doi.org/10.1016/j.csite.2023.102805.
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15—20. https://doi.org/10.2298/CICEQ191220020P.
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177—187. https://doi.org/10.2298/CICEQ200504036P.
N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567—574. https://doi.org/10.1115/1.1571080.
B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M. M. Piñeiro, J.L. Legido, J. Therm. Anal. Calorim.111 (2013) 1615—1625. https://doi.org/10.1007/s10973-012-2534-9.
L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 49 (2013) 17—24. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026.
B. Bakthavatchalam, K. Habib, R. Saidur, B. Baran, K. Irshad, J. Mol. Liq. 305 (2020), 112787. https://doi.org/10.1016/j.molliq.2020.112787.
S.M.S. Murshed, P. Estell´e, Renew. Sustain. Energy Rev. 76 (2017) 1134—1152. https://doi.org/10.1016/j.rser.2017.03.113.
S.M.S. Murshed, Heat Transf. Eng. 33 (8) (2012) 722—731. https://doi.org/10.1080/01457632.2011.635986.
R. Martínez-Cuenca, R. Mondragón, L. Hernández, C. Segarra, J.C. Jarque, T. Hibiki, J.E. Juliá, Appl. Therm. Eng. 98 (2016) 841—849. https://doi.org/10.1016/j.applthermaleng.2015.11.050.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Periasamy Manikandan Srinivasan, Pradeep Kumar Chinnusamy, Raghul Thangamani, Suriya Palaniraj, Pranesh Ravichandran, Surya Karuppasamy, Yokeshwaran Sanmugam
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.