ONE—STEP CONVERSION OF ETHANE TO ETHYLENE OXIDE IN AC PARALLEL PLATE DIELECTRIC BARRIER DISCHARGE
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ230228026SKeywords:
Dielectric barrier discharge, Epoxidation, Ethane oxidative dehydrogenation, Ethylene oxide, One-step reactionAbstract
This work studied the one-step conversion of ethane (C2H6) to ethylene oxide (EO) in an AC parallel plate dielectric barrier discharge (DBD) system with two frosted glass plates under ambient temperature and atmospheric pressure. EO is directly produced from C2H6 in a single step without the requirement to separate and recycle ethylene. The effects of the applied voltage, input frequency, and O2/C2H6 feed molar ratio on the EO synthesis performance were examined. The results showed that a higher applied voltage and lower input frequency generated more highly energetic electrons, resulting in a higher current. More electrons collided with reactant gas molecules to initiate plasma reactions, increasing C2H6 and O2 conversions. The increased O2/C2H6 feed molar ratio enhanced C2H6 and O2 conversions. The optimum conditions were found to be an applied voltage of 7 kV, input frequency of 550 Hz, and O2/C2H6 feed molar ratio of 1:1, which demonstrated the highest EO selectivity (42.6%), EO yield (19.4%), and lowest power consumption per EO molecule produced (6.7 x 10-18 Ws/molecule).
References
H. Alzahrani, J. Bravo-Suárez, J. Catal. 418 (2023) 225—236. https://doi.org/10.1016/j.jcat.2023.01.016.
G. Boskovic, D. Wolf, A. Brückner, M. Baerns, J. Catal. 224 (2004) 187—196. https://doi.org/10.1016/j.jcat.2004.02.030.
A. Talati, M. Haghighi, F. Rahmani, Adv. Powder Technol. 27 (2016) 1195—1206. https://doi.org/10.1016/j.apt.2016.04.003.
J.M. Hollis, F.J. Lovas, P.R. Jewell, L.H. Coudert, Astrophys. J. 571 (2002) L59. https://iopscience.iop.org/article/10.1086/341148.
T. Salmi, M. Roche, J. Hernández Carucci, K. Eränen, D. Murzin, Curr. Opin. Chem. Eng. 1 (2012) 321—327. https://doi.org/10.1016/j.coche.2012.06.002.
S. Dolmaseven, N. Yuksel, M.F. Fellah, Sens. Actuators, A 350 (2023) 114109. https://doi.org/10.1016/j.sna.2022.114109.
T. Pu, H. Tian, M.E. Ford, S. Rangarajan, I.E. Wachs, ACS Catal. 9 (2019) 10727—10750. https://doi.org/10.1021/acscatal.9b03443.
W. Diao, C.D. DiGiulio, M.T. Schaal, S. Ma, J.R. Monnier, J. Catal. 322 (2015) 14—23. http://dx.doi.org/10.1016/j.jcat.2014.11.007.
C.-J. Chen, J.W. Harris, A. Bhan, Chem. Eur. J. 24 (2018) 12405—12415. https://doi.org/10.1002/chem.201801356.
A. Alamdari, R. Karimzadeh, S. Abbasizadeh, Rev. Chem. Eng. 37 (2021) 481—532. https://doi.org/10.1515/revce-2017-0109.
P.H. Keijzer, J.E. van den Reijen, C.J. Keijzer, K.P. de Jong, P.E. de Jongh, J. Catal. 405 (2022) 534—544. https://doi.org/10.1016/j.jcat.2021.11.016.
Y. Wu, A. Yan, Y. He, B. Wu, T. Wu, Catal. Today 158 (2010) 258—262. https://doi.org/10.1016/j.cattod.2010.03.041.
J. Gao, D. Zhou, Y. Wu, T. Wu, Catal. Commun. 30 (2013) 51—55. http://dx.doi.org/10.1016/j.catcom.2012.10.023.
A. Fridman, A. Gutsol, Y.I. Cho, Adv. Heat Transfer 40 (2007) 1—142. https://doi.org/10.1016/S0065-2717(07)40001-6.
D. Li, V. Rohani, F. Fabry, A. Parakkulam Ramaswamy, M. Sennour, L. Fulcheri, Appl. Catal., B 261 (2020) 118228. https://doi.org/10.1016/j.apcatb.2019.118228.
Y.P. Zhang, Y. Li, Y. Wang, C.J. Liu, B. Eliasson, Fuel Process. Technol. 83 (2003) 101—109. http://dx.doi.org/10.1016/S0378-3820(03)00061-4.
Y. Li, C.J. Liu, B. Eliasson, Y. Wang, Energy Fuels 16 (2002) 864—870. https://doi.org/10.1021/ef0102770.
B. Lee, E.S. Jo, I. Heo, T.-H. Kim, D.-W. Park, Chem. Eng. Process.179 (2022) 109070. https://doi.org/10.1016/j.cep.2022.109070.
U.H. Dahiru, F. Saleem, F.T. Al-sudani, K. Zhang, A.P. Harvey, Chem. Eng. Process.178 (2022) 109035. https://doi.org/10.1016/j.cep.2022.109035.
S. Li, Y. Li, X. Yu, X. Dang, X. Liu, L. Cao, J. Clean. Prod. 368 (2022) 133073. https://doi.org/10.1016/j.jclepro.2022.133073.
Y. Zhang, H. Zhang, A. Zhang, P. Héroux, Z. Sun, Y. Liu, Chem. Eng. J. 458 (2023) 141406. https://doi.org/10.1016/j.cej.2023.141406.
C.A. Aggelopoulos, D. Tataraki, G. Rassias, Chem. Eng. J. 347 (2018) 682—694. https://doi.org/10.1016/j.cej.2018.04.111.
J. Sima, J. Wang, J. Song, X. Du, F. Lou, Y. Pan, Q. Huang, C. Lin, Q. Wang, G. Zhao, Chemosphere 317 (2023) 137815. https://doi.org/10.1016/j.chemosphere.2023.137815. http://www.ijma.info/index.php/ijma/article/view/1854.
T. Sreethawong, T. Suwannabart, S. Chavadej, Plasma Chem. Plasma Process. 28 (2008) 629—642. https://doi.org/10.1007/s11090-008-9149-8.
T. Suttikul, S. Yaowapong-aree, H. Sekiguchi, S. Chavadej, J. Chavadej, Chem. Eng. Process. 70 (2013) 222—232. https://doi.org/10.1016/j.cep.2013.03.018.
T. Suttikul, B. Paosombat, M. Santikunaporn, M. Leethochawalit, S. Chavadej, Ind. Eng. Chem. 53 (2014) 3778—3786. https://doi.org/10.1021/ie402659c.
T. Suttikul, S. Kodama, H. Sekiguchi, S. Chavadej, Plasma Chem. Plasma Process. 34 (2014) 187—205. https://doi.org/10.1007/s11090-013-9492-2.
S. Chavadej, W. Dulyalaksananon, T. Suttikul, Chem. Eng. Process.107 (2016) 127—137. http://dx.doi.org/10.1016/j.cep.2016.05.010.
X. Zhang, A. Zhu, X. Li, W. Gong, Catal. Today 89 (2004) 97—102. https://doi.org/10.1016/j.cattod.2003.11.015.
F. Cameli, P. Dimitrakellis, G.D. Stefanidis, D.G. Vlachos, Plasma Chem. Plasma Process. (2023). https://doi.org/10.1007/s11090-023-10343-w.
T. Suttikul, C. Tongurai, H. Sekiguchi, S. Chavadej, Plasma Chem. Plasma Process. 32 (2012) 1169—1188. https://doi.org/10.1007/s11090-012-9398-4.
C. Liu, A. Marafee, B. Hill, G. Xu, R. Mallinson, L. Lobban, Ind. Eng. Chem. 35 (1996) 3295—3301. https://doi.org/10.1021/ie960138j.
B.L. Farrell, V.O. Igenegbai, S. Linic, ACS Catal. 6 (2016) 4340—4346. https://doi.org/10.1021/acscatal.6b01087.
A.V. da Rosa, J.C. Ordóñez, Fundamentals of Renewable Energy Processes, Academic Press, Oxford (2022), pp. 425. https://doi.org/10.1016/B978-0-12-816036-7.00021-X.
J.J. Zou, C.J. Liu, Carbon Dioxide as Chemical Feedstock, M. A. Editor Ed., Wiley-VCH, Weinheim (2010), pp. 274—279. https://doi.org/10.1002/9783527629916.ch10.
R. Sanchez-Gonzalez, Y. Kim, L.A. Rosocha, S. Abbate, IEEE Trans. Plasma Sci. 35 (2007) 1669—1676. https://doi.org/10.1109/TPS.2007.910743.
Y. Li, G.-h. Xu, C.-j. Liu, B. Eliasson, B.-z. Xue, Energy Fuels 15 (2001) 299—302. http://dx.doi.org/10.1021/ef0002445.
S. Ahmed, A. Aitani, F. Rahman, A. Al-Dawood, F. Al-Muhaish, Appl. Catal. A: Gen 359 (2009) 1—24. https://doi.org/10.1016/j.apcata.2009.02.038.
C. De Bie, J. Van Dijk, A. Bogaerts, J. Phys. Chem. C. 120 (2016) 25210—25224. https://doi.org/10.1021/acs.jpcc.6b07639.
D. Ren, G. Cheng, J. Li, J. Li, W. Dai, X. Sun, D. Cheng, Catal. Lett. 147 (2017) 2920—2928. https://doi.org/10.1007/s10562-017-2211-5.
A. Chongterdtoonskul, J.W. Schwank, S. Chavadej, J. Mol. Catal. 372 (2013) 175—182. http://dx.doi.org/10.1016/j.molcata.2013.02.016.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Thitiporn Suttikul, Sirimas Manthung, Sasikarn Nuchdang, Dussadee Rattanaphra, Thongchai Photsathian
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
King Mongkut's University of Technology Thonburi
Grant numbers KMUTNB-64-KNOW-24 -
Ministry of Higher Education, Science, Research and Innovation, Thailand
Grant numbers RGNS 63-087 -
Thailand Institute of Nuclear Technology