COMBUSTION, EMISSION, AND PERFORMANCE CHARACTERISTICS OF HYBRID BIOFUEL AT DIFFERENT COMPRESSION RATIOS

Original scientific paper

Authors

  • Ananthakumar Sudalaimani Department of Mechanical Engineering, Government College of Engineering. Tirunelveli – 627 007, Tamil Nadu, India https://orcid.org/0000-0002-1238-7260
  • Barathiraja Rajendran Department of Mechanical Engineering, Einstein College of Engineering, Near MS University, Tirunelveli – 627 012, Tamil Nadu, India https://orcid.org/0000-0002-4815-7491
  • Thiyagaraj Jothi Department of Mechatronics Engineering, Er. Perumal Manimekalai College of Engineering, Hosur – 635 117 Tamil Nadu, India https://orcid.org/0000-0001-7594-7782
  • Mathanbabu Mariappan epartment of Mechanical Engineering, Government College of Engineering, Bargur, Krishnagiri - 635 104, Tamil Nadu, India https://orcid.org/0000-0002-1306-8990

DOI:

https://doi.org/10.2298/CICEQ230203024A

Keywords:

Rubber seed oil, waste plastic oil, performance, emission, variable compression ratio

Abstract

The primary aim of this study is to alternate between conventional fossil fuels and reduce the emissions of greenhouse gases and smoke from diesel engines. The current study aimed to improve the performance and emission characteristics of a variable compression ratio (VCR) diesel engine operated with hybrid biodiesel. Experiments were done with the best hybrid biodiesel, which was made by mixing 20% rubber seed oil (RSO) with 80% waste plastic oil (WPO). The tests were done at four compression ratios (CRs): 16:1, 17:1, 18:1, and 20:1. Under a CR of 20:1 and at full load, the engine’s brake thermal efficiency went up by 30.5%, its brake-specific fuel consumption went down by 0.347 kg/kWh, and notably diminished emissions of carbon monoxide (0.43% volume), hydrocarbons (79 ppm), and smoke (22%). However, with increasing CRs, NOx emissions rose unfavourably (1092 ppm) compared to diesel (820 ppm). Also, diesel and clean (WPO) were compared to see how the CR values affected combustion, performance, and emissions. Compared to diesel, under maximum load and the CR of 20:1, hybrid biodiesel demonstrated approximately 3.7% higher brake thermal efficiency. The findings suggest potential applications for this hybrid biodiesel in the automobile sector, the power generation industry, and marine applications.

References

L. Li, K. Quan, J. Xu, F. Liu, S. Liu, S. Yu, X. Ge, Fuel 123 (2014) 189—193. https://doi.org/10.1016/j.fuel.2014.01.049.

W. Roschat, T. Siritanon, B. Yoosuk, T. Sudyoadsuk, V. Promarak, Renewable Energy 101 (2017) 937—944. https://doi.org/10.1016/j.renene.2016.09.057.

C. Cleetus, S. Thomas, S. Varghese, J. Energy 2013- ID 608797 (2013). https://doi.org/10.1155/2013/608797.

S. Nagaraja, K. Sooryaprakash, R. Sudhakaran, Procedia Earth Planet. Sci. 11 (2015) 393—401. https://doi.org/10.1016/j.proeps.2015.06.038.

M.B. Tasić, M.S. Stanković, M.D. Kostić, O.S. Stamenković, V.B. Veljković, Chem. Ind. Chem. Eng. Q. 28 (2022) 237—245. https://doi.org/10.2298/CICEQ210819035T.

N.D.L.D. Silva, F.P.V. Loz, J.I. Soletti, D.D.G. Coelho, Chem. Ind. Chem. Eng. Q. 27 (2021) 155—163. https://doi.org/10.2298/CICEQ191117034S.

M. Vasudeva, S. Sharma, S.K. Mohapatra, K. Kundu, Springer Plus 5 293 (2016) 1—13. https://doi.org/10.1186/s40064-016-1945-7.

G.A. Miraculas, N. Bose, Adv. Mat. Res. 984 (2014) 850—854. https://doi.org/10.4028/www.scientific.net/AMR.984-985.850.

J. Gandure, C. Ketlogetswe, IEEE (2011) 1—4. https://doi.org/10.1109/AFRCON.2011.6071993.

M. Krishnamoorthi, R. Malayalamurthi, Energy 128 (2017) 312—328. https://doi.org/10.1016/j.energy.2017.04.038.

B. Singh, S.K. Shukla, Biofuels 7 (2016) 471—477. https://doi.org/10.1080/17597269.2016.1163210.

M. El_Kassaby, M.A Nemit_Allah, Alex. Eng. J. 52 (2013) 1—11. https://doi.org/10.1016/j.aej.2012.11.007.

M.T. Raj, M.K.K. Kandasamy, Int. J. Energy Environ. Eng. 3 (2012) 1—8. https://doi.org/10.1186/2251-6832-3-18.

K. Muralidharan, D. Vasudevan, Appl. Energy 88 (2011) 3959—3968. https://doi.org/10.1016/j.apenergy.2011.04.014.

H.K Amarnath, P. Prabhakaran, S.A Bhat, R. Paati, Int. J. Green Energy 11 (2014) 675—694. https://doi.org/10.1080/15435075.2013.777905.

T.A. Kumar, R. Chandramouli, T. Mohanraj, Ecotoxicol. Environ. Saf. 121 (2015) 51—56. https://doi.org/10.1016/j.ecoenv.2015.06.008.

N.R. Kumar, C. Sekhar, S. Adinarayana, Int. J. Appl. Sci. Eng. 11 (2013) 41—49. https://gigvvy.com/journals/ijase/articles/ijase-201303-11-1-041.pdf.

C.A. Rinaldini, E. Mattarelli, T. Savioli, G. Cantore, M. Garbero, A. Bologna, Fuel 183 (2016) 292—303.

https://doi.org/10.1016/j.fuel.2016.06.015

M. Mani, C. Subash, G. Nagarajan, Appl. Therm. Eng. 29 (2009) 2738—2744. https://doi.org/10.1016/j.applthermaleng.2009.01.007.

J. Devaraj, Y. Robinson, P. Ganapathi, Energy 85 (2015) 304—309. https://doi.org/10.1016/j.energy.2015.03.075.

I. Khalil, A.R.A. Aziz, S. Yusuf, Appl. Mech. Mater. 695 (2015) 323—327. https://doi.org/10.4028/www.scientific.net/AMM.695.323.

A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Renewable Energy 33 (2008) 2077—2083. https://doi.org/10.1016/j.renene.2007.11.013.

P. Senthilkumar, G. Sankaranarayanan, J. Energy Inst. 89 (2016) 504—512. https://doi.org/10.1016/j.joei.2015.07.006.

G. Kasiraman, B. Nagalingam, M. Balakrishnan, Energy 47 (2012) 116—124. https://doi.org/10.1016/j.energy.2012.09.022.

H. Raheman, P.C. Jena, S.S Jadav, Int. J. Energy Environ. Eng. 4 (2013) 1—9. https://doi.org/10.1186/2251-6832-4-6.

R. Barathiraja, P. Thirumal, G. Saraswathy, I. Rahamathullah, Chem. Ind. Chem. Eng. Q. 28 (2022) 169—178. https://doi.org/10.2298/CICEQ201120028B.

I. Veza, A.T. Hoang, A.A. Yusuf, S.G. Herawan, M.E.M. Soudagar, O.D. Samuel, M.F.M. Said, A.S. Silitonga, Fuel 333 (2023) 126377. https://doi.org/10.1016/j.fuel.2022.126377.

C. Enweremadu, O. Samuel, H. Rutto, Environ. Clim. Technol. 26(1) (2022) 630—647. https://doi.org/10.2478/rtuect-2022-0048.

A.T. Garavand, A.H. Maleni, T.M. Gundoshmian, O.D. Samuel, Energy Convers.Manag.: X 16 (2022) 100304. https://doi.org/10.1016/j.ecmx.2022.100304.

O.D. Samuel, M.O. Okwu, S.T. Amosun, T.N. Verma, S.A. Afolalu, Ind. Crops Prod. 141 (2019) 111658. https://doi.org/10.1016/j.indcrop.2019.111658.

T.S. Singh, U. Rajak, O.D. Samuel, P.K. Chaurasiya, K. Natarajan, T.N. Verma, P. Nashine, Fuel 285 (2021) 119103. https://doi.org/10.1016/j.fuel.2020.119103.

A.L. Hananto, A. Fauzi, A. Suhara, I. Davison, M. Spraggon, S.G. Herawan, O.D. Samuel, A.A. Yusuf, M. Idris, I. Veza, Results Eng. 19 (2023) 101334. https://doi.org/10.1016/j.rineng.2023.101334.

O.D. Samuel, B.U. Oreko, J.O. Oyejide, S. Idi, O.S. Fayomi, J. Phys. Conf. Ser. 1378 (2019) 042024. https://doi.org/10.1088/1742-6596/1378/4/042024.

Downloads

Published

14.09.2023 — Updated on 12.04.2024

Issue

Section

Articles

How to Cite

COMBUSTION, EMISSION, AND PERFORMANCE CHARACTERISTICS OF HYBRID BIOFUEL AT DIFFERENT COMPRESSION RATIOS: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(3), 207-221. https://doi.org/10.2298/CICEQ230203024A

Similar Articles

1-10 of 92

You may also start an advanced similarity search for this article.