THE INFLUENCE OF MOISTURE CONTENT ON DRILLED CUTTINGS’ PROPERTIES OF BED PACKING AND FLOWABILITY

Original scientific paper

Authors

  • Heitor Otacílio Nogueira Altino Federal University of Uberlandia, Faculty of Chemical Engineering, Av. João Naves de Ávila, 2121, Block 1K, 38408-100 Uberlândia, MG, Brazil https://orcid.org/0000-0002-9888-1904
  • Giovani Aud Lourenço Federal Institute of Goiás, Av. Furnas, 55, Village Imperial, 75524-245 Itumbiara, GO, Brazil https://orcid.org/0000-0002-3465-2299
  • Carlos Henrique Ataíde* Federal University of Uberlandia, Faculty of Chemical Engineering, Av. João Naves de Ávila, 2121, Block 1K, 38408-100 Uberlândia, MG, Brazil
  • Claudio Roberto Duarte Federal University of Uberlandia, Faculty of Chemical Engineering, Av. João Naves de Ávila, 2121, Block 1K, 38408-100 Uberlândia, MG, Brazil https://orcid.org/0000-0001-7539-3054

DOI:

https://doi.org/10.2298/CICEQ230424023A

Keywords:

Particle aggregation, particle disaggregation, packed bed, flowability, compaction

Abstract

To design and operate various equipment of the solids control system in offshore drilling platforms, it is important to establish how the moisture content influences the characteristics of drilled cuttings to form packed beds and flow over solid surfaces. The current study comprehensively analyzes how moisture content, primarily composed of water and representing water-based muds (WBMs), influences the bed packing properties and drilled cuttings' flowability. The particle aggregation/disaggregation dynamics, loose and tapped bulk densities and porosities, compaction dynamics of packed beds, Hausner ratio, and angle of repose of drilled cuttings with ten distinct moisture contents (1.444.0 wt%) were analyzed. It was noticed that the increment of moisture content up to 15.2% promoted the formation of looser interparticle structures. However, these structures were steadier, showing greater difficulty flowing and releasing air/liquid. The continuous increment of moisture content beyond 15.2% promoted a complete change in the material behavior. The interparticle structures became denser. The material could flow and release air/liquid more easily. In addition, it was possible to establish a classification of the different behaviors of drilled cuttings according to the moisture content. Predictive models were proposed to describe the influence of the moisture content on the bed packing and flowability properties of drilled cuttings.

Author Biography

  • Carlos Henrique Ataíde*, Federal University of Uberlandia, Faculty of Chemical Engineering, Av. João Naves de Ávila, 2121, Block 1K, 38408-100 Uberlândia, MG, Brazil

    *In memoriam

References

EnscoRowan, Offshore Market Recovery, EnscoRowan, Houston (2019), p. 28. https://www.valaris.com/home/default.aspx.

C. Apostolidou, E. Sarris, A. Georgakopoulos, J. Pet. Sci. Eng. 208 (2022) 109758. https://doi.org/10.1016/j.petrol.2021.109758.

A.K. Alkalbani, G.T. Chala, A.M. Alkalbani, Ain Shams Eng. J. 14 (2023) 102147. https://doi.org/10.1016/j.asej.2023.102147.

IOGP, Drilling waste management technology review, The International Association of Oil & Gas Producer, London (2016), p. 102. https://www.iogp.org/bookstore/product/drilling-waste-management-technology-review/.

S. Seaton, R.G. Morris, SPE/EPA/DOE Exploration and Production Environmental Conference, in Proceeding of SPE/EPA/DOE Exploration and Production Environmental Conference, Galveston, USA (2005) p. 157—164. https://doi.org/10.2118/94194-MS.

G.A. Burnett, C. Crabb, D. Wood, K.W. Seyfert, J.M. McIntosh, US 2006/0102390A1 (2006).

G.A. Burnett, C. Crabb, D. Wood, K. Seyffert, J. McIntosh, US 20070215386A1 (2007).

G.A. Burnett, D. Wood, K.W. Seyffert, W.C. Herben, J.M. Mcintosh, C. Crabb, US 7195084B2 (2007).

G.A. Burnett, D. Wood, K.W. Seyffert, W.C. Herben, J.M. Mcintosh, C. Crabb, EP 1766181B1 (2011).

G.A. Burnett, D. Wood, K.W. Seyffert, W.C. Herben, J.M.

Mcintosh, C. Crabb, WO 2005/124096Al (2004).

G.A. Burnett, C. Crabb, D. Wood, K.W. Seyffert, J. Mcintosh, EP 2165951A1 (2011).

D. Mills, Pneumatic Conveying Design Guide, Elsevier, Oxford (2004) p. 650.

G.E. Klinzing, F. Rizk, R. Marcus, L.S. Leung, Pneumatic Conveying of Solids: A Theoretical and Practical Approach, Springer, New York (2010) p. 600. https://doi.org/10.1080/07373939308916871.

J.P. Robinson, S.W. Kingman, C.E. Snape, S.M. Bradshaw, M.S.A. Bradley, H. Shang, R. Barranco, Chem. Eng. Res. Des. 88 (2010) 146—154. https://doi.org/10.1016/j.cherd.2009.07.011.

R. Pesic, T. Kaludjerovic-Radoicic, N. Boskovic-Vragolovic, Z. Arsenijevic, Z. Grbavcic, Chem. Ind. Chem. Eng. Q. 21 (2015) 419—427. https://doi.org/10.2298/CICEQ140618044P.

D. Schulze, Powders and Bulk Solids, Springer, New York (2008) p. 516. 978-3-540-73768-1.

A. Crouter, L. Briens, AAPS PharmSciTech 15 (2014) 65—74. https://doi.org/10.1208/s12249-013-0036-0.

T.O. Althaus, E.J. Windhab, Powder Technol. 215–216 (2012) 59—65. https://doi.org/10.1016/j.powtec.2011.09.007.

P. Pierrat, H.S. Caram, Powder Technol. 91 (1997) 83—93. https://doi.org/10.1016/S0032-5910(96)03179-8.

H.G. Kristensen, Adv. Pharm. Sci. 7 (1995) 221—272. https://doi.org/10.1016/S0065-3136(06)80006-3.

K.P. Panayiotopoulos, C.E. Mullins, J. Soil Sci. 36 (1985) 129—139. https://doi.org/10.1111/j.1365-2389.1985.tb00318.x.

H. Kalman, D. Portnikov, Powder Technol. 381 (2021) 285—297. https://doi.org/10.1016/j.powtec.2020.12.019.

API, Recommended Practice for Field Testing Oil-Based Drilling Fluids: API Recommended Practice 13B-2, Washington (2012), p. 67.

ASTM, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates (C136-06), ASTM International, West Conshohocken (2015), p. 5. https://doi.org/10.1520/C0136_C0136M-14.

P.A. Vesilind, Resour. Recover. Conserv. 5 (1980) 275—277. https://doi.org/10.1016/0304-3967(80)90007-4.

ASTM, Standard test methods for determining loose and tapped bulk densities of powders using a graduated cylinder (D7481-18), American Society for Testing and Materials, (2018), p. 4. https://doi.org/10.1520/D7481-18.

USP, The United States Pharmacopeia: the National Formulary, United States Pharmacopeia Convenction, Rockville (2018), p. 1136.

H.O.N. Altino, G.A. Lourenço, C.H. Ataíde, Powder Technol. 391 (2021) 184—197. https://doi.org/10.1016/j.powtec.2021.06.013.

K. Traina, R. Cloots, S. Bontempi, G. Lumay, N. Vandewalle, F. Boschini, Powder Technol. 235 (2013) 842—852. https://doi.org/10.1016/j.powtec.2012.11.039.

ASTM, Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders (C1444-00), American Society for Testing and Materials, (2000). p. 4. https://doi.org/10.1520/C1444-00.

WHO. Bulk density and tapped density of powders (WHOdocument QAS/11.450), WorldHealth Organization, Dept. of Essential Medicines and Pharmaceutical Policies, (2012).

K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials, Springer, Boston (1998), p. 249. https://doi.org/10.1007/978-1-4615-5811-8.

C. Hyun, S. Shah, S. Osisanya, SPE Annual Technical Conference and Exhibition, in Proceeding of the SPE Annual Technical Conference and Exhibition, Dallas, USA (2000), p. 905—918. https://doi.org/10.2523/63269-MS.

I. Petri, M.S. Pereira, J.M. dos Santos, C.R. Duarte, C.H. Ataíde, C.M. d. Á. Panisset, J. Pet. Sci. Eng. 134 (2015) 23—29. https://doi.org/10.1016/j.petrol.2015.07.022.

D. Geldart, Powder Technol. 7 (1973) 285—292. https://doi.org/10.1016/0032-5910(73)80037-3.

R.J. Reeder, Carbonates: Mineralogy and Chemistry, Stony Book, New York (1983), p. 394. https://doi.org/10.1515/9781501508134.

H.G. Kristensen, T. Schaefer, Drug Dev. Ind. Pharm. 13 (1987) 803—872. https://doi.org/10.3109/03639048709105217.

A. Singer, Z. Barakat, S. Mohapatra, S.S. Mohapatra, Nanocarriers Drug Deliv. (2019) 395—419. https://doi.org/10.1016/b978-0-12-814033-8.00013-8.

S. Golubić, J. Schneider, in Biogeochemical Cycling of Mineral-Forming, P.A. Trudinger and D.J. Swaine, Elsevier, (1979) Amsterdam, p. 122. https://doi.org/10.1016/S0166-1116(08)71056-2.

P. Philippe, D. Bideau, Europhys. Lett. 60 (2002) 677—683. https://doi.org/10.1209/epl/i2002-00362-7.

H. Lu, X. Guo, Y. Jin, X. Gong, Chem. Eng. Res. Des. 133 (2018) 326—334. https://doi.org/10.1016/j.cherd.2018.03.023.

S. Gaisford, M. Saunders, Essentials of Pharmaceutical Preformulation, John Wiley & Sons, Chichester (2012), p. 252. https://doi.org/10.1002/9781118423226.

H. Kalman, Powder Technol. 393 (2021) 582—596. https://doi.org/10.1016/j.powtec.2021.08.010.

D. Geldart, E.C. Abdullah, A. Hassanpour, L.C. Nwoke, I. Wouters, Chin. Particuol. 4 (2006) 104—107. https://doi.org/10.1016/s1672-2515(07)60247-4.

H. Kalman, D. Portnikov, Powder Technol. 381 (2021) 477—487. https://doi.org/10.1016/j.powtec.2020.12.014.

I.M.F. Wouters, D. Geldart, Part. Part. Syst. Charact. 13 (1996) 254—259. https://doi.org/10.1002/ppsc.19960130408.

H. Kalman, Powder Technol. 382 (2021) 573—593. https://doi.org/10.1016/j.powtec.2021.01.012.

Graphical Abstract

Published

31.08.2023 — Updated on 12.04.2024

Issue

Section

Articles

How to Cite

THE INFLUENCE OF MOISTURE CONTENT ON DRILLED CUTTINGS’ PROPERTIES OF BED PACKING AND FLOWABILITY: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly, 30(3), 193-206. https://doi.org/10.2298/CICEQ230424023A