NUMERICAL STUDY OF TURBULENCE ON DRAG COEFFICIENT DETERMINATION FOR PARTICLE AGGLOMERATES
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ221206021OKeywords:
Particulate matter, particle agglomerates, turbulence, drag coefficient, computational fluid dynamicsAbstract
Numerical simulations of the flow surrounding particle agglomerates were carried out using computational fluid dynamics to assess the ability of five RANS turbulence models to estimate the drag coefficient in particle agglomerates. Simulations were carried out in steady conditions for Reynolds numbers between 1 and 1500. Streamlines showed that symmetrical agglomerates present a velocity profile similar to the single sphere profile. Results showed that both Spalart-Allmaras and SST k-ω turbulence models could represent the flow profile in the regions near and far from the walls of the agglomerates and the wake region in the rear of the agglomerates. The RNG k-ε model showed poor quality in predicting the velocity profile and the drag coefficient. The drag coefficient obtained by simulations presented a trend better represented by the Tran-Cong model, also showing that deviations from the predictions decreased as the packing density of the agglomerate increased. The use of steady RANS simulations showed to be a feasible and efficient method to predict, with low computational cost, the drag coefficient in particle agglomerates. For the transition and turbulent flows, results presented good agreement, with deviations between -15% and 13%, while for lower Reynolds numbers, deviations varied between -25% and 5%.
References
J. Wang, W. Ge, J. Li, Chem. Eng. Sci. 63 (2008) 1553—1571. https://doi.org/10.1016/j.ces.2007.11.023.
E.U. Hartge, L. Ratschow, R. Wischnewski, J. Werther, Particuology 7 (2009) 283—296.
https://doi.org/10.1016/j.partic.2009.04.005.
A. Nikolopoulos, D. Papafotiou, N. Nikolopoulos, P. Grammelis, E. Kakaras, Chem. Eng. Sci. 65 (2010) 4080—4088. https://doi.org/10.1016/j.ces.2010.03.054.
L. Wang, C. Wu, W. Ge, Powder Technol. 319 (2017) 221—227. https://doi.org/10.1016/j.powtec.2017.06.046.
D. Gidaspow, in Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions with Applications, Academic Press, Cambridge (1994). ISBN: 978-0-122-82470-8.
R.J. Hill, D.L. Koch, A.J.C. Ladd, J. Fluid Mech. 448 (2001) 213—241. https://doi.org/10.1017/S0022112001005948.
R.J. Hill, D.L. Koch, A.J.C. Ladd, J. Fluid Mech. 448 (2001) 243—278. https://doi.org/10.1017/S0022112001005936.
M.A. van der Hoef, R. Beetstra, J.A.M. Kuipers, J. Fluid Mech. 528 (2005) 233—254. https://doi.org/10.1017/S0022112004003295.
R.C. Senior, C. Brereton, Chem. Eng. Sci. 47 (1992) 281—296. https://doi.org/10.1016/0009-2509(92)80020-D.
K. Kuwagi, K. Takano, M. Horio, Powder Technol. 113 (2000) 287—298. https://doi.org/10.1016/S0032-5910(00)00311-9.
S. Tran-Cong, M. Gay, E.E. Michaelides, Powder Technol. 139 (2004) 21—32. https://doi.org/10.1016/j.powtec.2003.10.002.
D.A. Deglon, C.J. Meyer, Miner. Eng. 19 (2006) 1059—1068. https://doi.org/10.1016/j.mineng.2006.04.001.
G.L. Lane, Chem. Eng. Sci. 169 (2017) 188—211. https://doi.org/10.1016/j.ces.2017.03.061.
R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles, Academic Press, Cambridge (1978). ISBN: 978-0-121-76950-5.
D. Leith, Aerosol Sci. Technol. 6 (1987) 153—161. https://doi.org/10.1080/02786828708959128.
A. Haider, O. Levenspiel, Powder Technol. 58 (1989) 63—70. https://doi.org/10.1016/0032-5910(89)80008-7.
G.H. Ganser, Powder Technol. 77 (1993) 143—152. https://doi.org/10.1016/0032-5910(93)80051-B.
A. Hölzer, M. Sommerfeld, Powder Technol. 184 (2008) 361—365. https://doi.org/10.1016/j.powtec.2007.08.021.
G. Bagheri, C. Bonadonna, Powder Technol. 301 (2016) 526—544. https://doi.org/10.1016/j.powtec.2016.06.015.
R. Beetstra, M. van der Hoef, J. Kuipers, Comput. Fluids 35 (2006) 966—970. https://doi.org/10.1016/j.compfluid.2005.03.009.
N.G. Deen, S.H.L. Kriebitzsch, M.A. van der Hoef, J.A.M. Kuipers, Chem. Eng. Sci. 81 (2012) 329—344. https://doi.org/10.1016/j.ces.2012.06.055.
S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, (2000). ISBN: 978-0-521-59886-6.
S. Heinz, Prog. Aerosp. Sci. 114 (2020) 100597. https://doi.org/10.1016/j.paerosci.2019.100597.
S.Y. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30 (1998) 329—364. https://doi.org/10.1146/annurev.fluid.30.1.329.
M. Dietzel, M. Sommerfeld, Powder Technol. 250 (2013) 122—137. https://doi.org/10.1016/j.powtec.2013.09.023.
M. Mehrabadi, E. Murphy, S. Subramaniam, Chem. Eng. Sci. 152 (2016) 199—212. https://doi.org/10.1016/j.ces.2016.06.006.
S. Chen, P. Chen, J. Fu, Phys. Fluids 34 (2022) 023307. https://doi.org/10.1063/5.0082653.
ANSYS, Inc, ANSYS Fluent 14.5 Theory Guide (2012). http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf [accessed 15 February 2023].
J. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics, Springer, New York, (2002). ISBN: 978-3-319-99693-6.
P.R. Spalart, S.R. Allmaras, Technical Report AIAA-92-0439 1 (1992) 5—21. https://doi.org/10.2514/6.1992-439.
V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Phys. Fluids A 7 (1992) 1510—1520. https://doi.org/10.1063/1.858424.
F.R. Menter, AIAA J. 32 (1994) 1598—1605. https://doi.org/10.2514/3.12149.
R.B. Langtry, F.R. Menter, AIAA J. 47 (2009) 2894—2906. https://doi.org/10.2514/1.42362.
B.E. Launder, G.J. Reece, W. Rodi, J. Fluid Mech. 68 (1975) 537—566. https://doi.org/10.1017/S0022112075001814.
W.R.A. Goossens, Powder Technol. 352 (2019) 350—359. https://doi.org/10.1016/j.powtec.2019.04.075.
E. Loth, Powder Technol. 182 (2008) 342—353. https://doi.org/10.1016/j.powtec.2007.06.001.
J.P. van Doormaal, G.D. Raithby, Numer. Heat Transfer 7 (1984) 147—163. https://doi.org/10.1080/01495728408961817.
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, Harlow, (2007). ISBN: 978-0-131-27498-3.
Z. Tuković, M. Perić, H. Jasak, Comput. Fluids 166 (2018) 78—85. https://doi.org/10.1016/j.compfluid.2018.01.041.
D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, La Cañada, (2004). ISBN: 978-1-928729-08-2.
B.E. Launder, B.I. Sharma, Lett. Heat Mass Trans. 1 (1974) 131—138. https://doi.org/10.1016/0094-4548(74)90150-7.
J.L. Isaacs, G. Thodos, Can. J. Chem. Eng. 45 (1967) 150—155. https://doi.org/10.1002/cjce.5450450306.
R. Clift, W.H. Gauvin, Can. J. Chem. Eng. 49 (1971) 439—448. https://doi.org/10.1002/cjce.5450490403.
E.K. Marchildon, W.H. Gauvin, AIChE J. 25 (1979) 938—948. https://doi.org/10.1002/aic.690250604.
R.P. Chhabra, L. Agarwal, N.K. Sinha, Powder Technol. 101 (1999) 288—295. https://doi.org/10.1016/S0032-5910(98)00178-8.
J. Militzer, J. M. Kan, F. Hamdullahpur, P.R. Amyotte, A.M. Al Taweel, Powder Technol. 57 (1989) 193—195. https://doi.org/10.1016/0032-5910(89)80075-0.
R. Ouchene, Phys. Fluids 32 (2020) 073303. https://doi.org/10.1063/5.0011618.
B.R. Munson, D.F. Young, T.H. Okiishi, Fundamentals of Fluid Mechanics, John Wiley & Sons, Hoboken, (2016). ISBN: 978-1-119-54799-0.
B.E. Thompson, J.H. Whitelaw, J. Fluid Mech. 157 (1985) 305—326. https://doi.org/10.1017/S0022112085002397.
L. Davidson, J. Fluids Eng. 117 (1995) 50—57. https://doi.org/10.1115/1.2816818.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ricardo Arbach Fernandes de Oliveira, Julio Henrique Zanata, Gabriela Cantarelli Lopes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 140412/2020-4