PROCESS MODELING AND KINETIC ESTIMATION FOR DESULFURIZATION OF DIESEL FUEL USING NANO - ZnO/Al2O3

Original scientific paper

Authors

  • Jasim I. Humadi Department of Petroleum and Gas Refining Engineering, College of Petroleum Processes Engineering, Tikrit University, Slah Al-deen, Iraq https://orcid.org/0000-0002-7597-2635
  • Muayad A. Shihab Department of Petroleum and Gas Refining Engineering, College of Petroleum Processes Engineering, Tikrit University, Slah Al-deen, Iraq https://orcid.org/0000-0002-0880-7883
  • Ghazwan S. Ahmed Chemical Engineering Department, College of Engineering, Tikrit University, Iraq https://orcid.org/0009-0000-3688-3982
  • Mustafa A Ahmed Ministry of Oil, North Refineries Company, Baiji Refinery, Slah Al-deen, Iraq
  • Zeyad A. Abdullah he State Company for Drugs Industry and Medical Appliances, Slah Al-deen, Iraq
  • Shankar Sehgal Mechanical Engineering, UIET, Panjab University, Chandigarh, India https://orcid.org/0000-0003-1874-0632

DOI:

https://doi.org/10.2298/CICEQ230208020H

Keywords:

gamma alumin, model, nano-catalyst, optimization, sulfur, zinc oxide

Abstract

In the present paper, a gamma alumina (γ-Al2O3) loaded zinc oxide (ZnO) nano-catalyst (ZnO/γ-Al2O3) has been synthesized and used to accelerate the removal of sulfur compounds from light gas oil by oxidative desulfurization (ODS) process. The synthesized nano-catalysts have been characterized by atomic force microscopy (AFM) and Brunauer-Emmett-Teller (BET). The ODS process has been conducted in a batch reactor at various reaction temperatures and batch times varying between 30 to 90 °C and 20 to 80 min, respectively. DBT removal was highest (93.781%) while using synthesized nano-catalyst (9% ZnO/γ-Al2O3) at 90°C and 80 min reaction time. Based on the obtained experimental data, a new mathematical modeling technique was performed for the ODS operation under mild experimental conditions to evaluate the most appropriate kinetic variables for the newly synthesized nano-catalysts. Simulation results indicate a good match with experimental observations with less than 5% absolute average error for all runs. The optimization procedure of the process condition displays that > 98% DBT could be eliminated within 200 min, at 87 °C, in the existence of synthesized nano-catalyst (9% ZnO/γ-Al2O3).

References

S.A. Jafar, A.T. Nawaf, J.I. Humadi, Mater. Today: Proc. 42 (2021) 1777—1783. https://doi.org/10.1016/j.matpr.2020.11.821.

J.I. Humadi, S.A. Gheni, S.M.R. Ahmed, G.H. Abdullah, A.N. Phan, A.P. Harvey, Process Saf. Environ. Prot. 152 (2021) 178—187. https://doi.org/10.1016/j.psep.2021.05.028.

G.S. Ahmed, J.I. Humadi, A.A. Aabid, Iraqi. J. Chem. Pet. Eng. 22 (2021) 11—17. https://doi.org/10.31699/IJCPE.2021.3.2.

A.T. Albayrak, A. Tavman, Ultrason. Sonochem. 83 (2022) 105845. https://doi.org/10.1016/j.ultsonch.2021.105845.

A. Akopyan, E. Eseva, P. Polikarpova, A. Kedalo, A. Vutolkina, A. Glotov, Molecules 25 (2020) 536. https://doi.org/10.3390/molecules25030536.

H. Zhao, G.A. Baker, Front. Chem. Sci. Eng. 9 (2015) 262—279. https://doi.org/10.1007/s11705-015-1528-0.

N.P. Radhika, R. Selvin, R. Kakkar, A. Umar, Arabian J. Chem. 12 (2019) 4550—4578. https://doi.org/10.1016/j.arabjc.2016.07.007.

P. Polikarpova, A. Akopyan, A. Shigapova, A. Glotov, A. Anisimov, E. Karakhanov, Energy Fuels 32 (2018) 10898—10903. https://doi.org/10.1021/acs.energyfuels.8b02583.

S. Subhan, A.U. Rahman, M. Yaseen, H.U. Rashid, M. Ishaq, M. Sahibzada, Z. Tong, Fuel 237 (2019) 793—805. https://doi.org/10.1016/j.fuel.2018.10.067.

Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F. M. Al-Shahrani, A. A. Hajji, O. R. Koseoglu, Catal. Rev.: Sci. Eng. 53 (2011) 199—255. https://doi.org/10.1080/01614940.2011.596426.

J. I. Humadi, S. A. Gheni, S. M. Ahmed, A. Harvey, RSC Adv. 12 (2022) 14385—14396.‏ https://doi.org/10.1039/D2RA01663J.

J. I. Humadi, A.T. Nawaf, A.T. Jarullah, M.A. Ahmed, S.A. Hameed, I. M. Mujtaba, Chem. Eng. Res. Des. 190 (2023) 634—650.‏ https://doi.org/10.1016/j.cherd.2022.12.043.

J.I. Humadi, Y.S. Issa, D. Y. Aqar, M. A. Ahmed, H.H. Ali Alak, I.M. Mujtaba, Int. J. Chem. React. Eng. 21(6) (2023) 727—741. https://doi.org/10.1515/ijcre-2022-0046.

M.I. Fathi, J.I. Humadi, Q.A. Mahmood, A.T. Nawaf, R.S. Ayoub, AIP Conf. Proc. 2660 (2022) 020026 https://doi.org/10.1063/5.0109089.

A.A. Aabid, J.I. Humadi, G.S. Ahmed, A.T. Jarullah, M.A. Ahmed, W.S. Abdullah, Appl. Sci. Eng. Prog. (2023).‏ https://doi.org/10.14416/j.asep.2023.02.007.

A.T. Nawaf, A.T. Jarullah, L.T. Abdulateef, Bull. Chem. React. Eng. Catal. 14 (2019) 79—92. https://doi.org/10.9767/bcrec.14.1.2507.79-92.

P. Huang, G. Luo, L. Kang, M. Zhu, B. Dai, RSC Adv. 7 (2017) 4681—4687. https://doi.org/10.1039/C6RA26587A.

B. Saha, S. Kumar, S. Sengupta, Chem. Eng. Sci. 199 (2019) 332—341. https://doi.org/10.1016/j.ces.2018.12.063.

S.A. Ghazwan, A.T. Jarullah, B. Al-Tabbakh, I.M. Mujtaba, J. Cleaner Prod. 257 (2020) 120436. https://doi.org/10.1016/j.jclepro.2020.120436.

A.T. Jarullah, K. Sarmad, B. Al-Tabbakh, I.M. Mujtaba, Chem. Prod. Process Model. 17(3) (2022) 213—233. https://doi.org/10.1515/cppm-2020-0097.

A.T. Nawaf, H.H. Hamed, S.A. Hameed, A.T. Jarullah, I.M. Mujtaba, Chem. Eng. Sci. 232 (2021) 116384. https://doi.org/10.1016/j.ces.2020.116384.

A.T. Nawaf, A.T. Jarullah, Sh. A. Hameed, I.M. Mujtaba, Chem. Prod. Process Model. 16(3) (2021) 229—249 (2021), https://doi.org/10.1515/cppm-2020-0107.

A.T. Jarullah, S.K. Aldulaimi, B.A. Al-Tabbakh, I.M. Mujtaba, Chem. Eng. Res. Des. 160 (2020) 405—416. https://doi.org/10.1016/j.cherd.2020.05.015.

K.I. Hamad, J.I. Humadi, Y.S. Issa, S.A. Gheni, M.A. Ahmed, A.A. Hassan, Cleaner Eng. Technol. 11 (2022). 100570.‏ https://doi.org/10.1016/j.clet.2022.100570.

A.T. Jarullah, I.M. Mujtaba, A.S. Wood, Fuel 90 (2011) 2165—2181. https://doi.org/10.1016/j.fuel.2011.01.025.

N. Ghorbani, G. Moradi Chin. J. Chem. Eng. 27 (2019) 2759—2770. https://doi.org/10.1016/j.cjche.2019.01.037.

S. A. Barham, L. O. Hamasalih, K. H. H. Aziz, K. M. Omer, & I. Shafiq, Proc. 10 (2022) 2327.‏ https://doi.org/10.3390/pr10112327.

B. S. Ahmed, L. O. Hamasalih, K. H. H. Aziz, Y. M. Salih, F. S. Mustafa, & K. M. Omer, Sep. 10 (2023) 206.‏ https://doi.org/10.3390/separations10030206.

J. I. Humadi, S. A. Jafar, N. S. Ali, M. A. Ahmed, M. J. Mzeed, R. J. Al-Salhi, & T. M. Albayati, Sci. Rep. 13 (2023) 9931.‏ https://doi.org/10.1038/s41598-023-37188-9.

G. H. A. Razzaq, M. A. Shihab, J. I. Humadi, K. K. Saxena, C. Prakash, & L. I. Saeed, Mater. Today: Proc. (2023). https://doi.org/10 .1016/j.matpr.2023.05.432.

Graphical Abstract

Published

02.08.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

PROCESS MODELING AND KINETIC ESTIMATION FOR DESULFURIZATION OF DIESEL FUEL USING NANO - ZnO/Al2O3: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2), 151-159. https://doi.org/10.2298/CICEQ230208020H

Similar Articles

81-90 of 104

You may also start an advanced similarity search for this article.