OPTIMIZATION OF ENERGY CONSUMPTION DURING IMMERSION FRYING OF PEANUTS

Original scientific paper

Authors

  • Đorđije Doder Department of Energy and Process Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-1489-3183
  • Damir Đaković Department of Energy and Process Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
  • Borivoj Stepanov Department of Energy and Process Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-0193-8231
  • Nikola Milivojević Department of Energy and Process Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-4759-776X

DOI:

https://doi.org/10.2298/CICEQ230116018D

Keywords:

Immersion frying, peanuts frying, energy consumption optimization

Abstract

This study investigated the influence of different regimes of immersion batch frying of peanuts on its specific energy consumption. The investigation was conducted via simulation, where energy consumption was calculated using various heat power/peanut mass ratios. As the result of the applied optimization procedure within the examined domain and calculation data, it was estimated that a regime with 24 kW of heating power and 28.6 kg of peanuts gave the minimum specific energy consumption. Besides that, the resulting surface could serve as a basis for designing and operating the frying equipment in more favorable regimes in terms of energy efficiency.

References

V. Oreopoulou, M. Krokida, D. Marinos-Kouris, in Handbook of drying, A.S. Mujumdar (Ed.), CRC Press, Boca Raton, FL (2015), 1189—1208. https://doi.org/10.1201/b17208.

J. Rossell, Frying: Improving quality, CRC Press, Boca Raton FL (2001). https://doi.org/10.1016/B978-1-85573-556-9.50002-X.

F. Kong, M.H. Oztop, R.P. Singh, M.J. McCarthy, LWT - Food Sci. Technol. 50 (1) (2013) 32—38. https://doi.org/10.1016/j.lwt.2012.07.044.

A. Alvis, C. Velez, M. Rada-Mendoza, M. Villamiel, H. S.Villada, Food Control 20 (2009) 321—325. https://doi.org/10.1016/j.foodcont.2008.05.016.

M. Farid, R. Kizilel, Chem. Eng. Process. 48 (2009) 217—223. https://doi.org/10.1016/j.cep.2008.03.013.

A. Ziaiifar, N. Achir, F. Curtois, I. Trezzani, G.Trystram, Int. J. Food Sci. 43 (2008) 1410—1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x.

S. Sahin, S.G. Sumnu, Advances in deep fat frying foods, CRC Press, Boca Raton, FL (2009). https://doi.org/10.1201/9781420055597.

B.E. Farkas, R.P.Singh, T.R. Rumsey, J. Food Eng. 29 (1996) 211—226. https://doi.org/10.1016/0260-8774(95)00072-0.

A. Kita, A. Figiel, Polish J. Food Nutr. Sci. 57 (4B) (2007) 285—590. http://journal.pan.olsztyn.pl/EFFECT-OF-PARAMETERS-OF-THERMAL-PROCESS-ON-THE-PROPERTIES-OF-PEANUTS,98825,0,2.html.

E.K. Oke, M.A. Idowu, O.P. Sobukola, S.A.O. Adeyeye, O. Akinsola, J. Culin. Sci. Technol. 16 (2) (2018) 107—127. https://doi.org/10.1080/15428052.2017.1333936.

X. Shi, J.P. Davis, Z. Xia, LWT - Food Sci. Technol. 75 (2017) 520—528. https://doi.org/10.1016/j.lwt.2016.09.030.

M. Erickson, Deep Frying: Chemistry, Nutrition, and Practical Applications, 2nd ed., AOCS Press, Urbana, IL (2007). https://doi.org/10.1016/B978-1-893997-92-9.50001-3.

ASHRAE, ASHRAE Handbook—Refrigeration (SI), American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta (2006) ISBN 1-931862-86-9.

C. Tangduangdee, S. Bhumiratana, S. Tia, Int. Commun. Heat Mass Transf. 31 (1) (2004) 73—84. https://www.semanticscholar.org/paper/Heat-and-Mass-Transfer-during-Deep-Fat-Frying-of-as-Tangduangdee-Bhumiratana/56cdfa70773daa659e2f1bd386fc3cf6c4bd7644.

A. Miyagi, J. Food Process. Preserv. 37 (2013) 701—708. https://doi.org/10.1111/j.1745-4549.2012.00685.x.

A. Safari, R. Salamat, O-D. Baik, J. Food Eng. 230 (2018) 114—123. https://doi.org/10.1016/j.jfoodeng.2018.01.022.

S. Rahman, Food Properties Handbook, CRC Press, Boca Raton, FL (1995) https://doi.org/10.1201/9781420003093.

S. Sahin, S.K. Sastry, L. Bayindirli, J. Food Eng. 39 (3) (1999) 307—311. https://doi.org/10.1016/S0260-8774(98)00171-X.

R. Arora, Optimization Algorithms and Applications: CRC Press, Boca Raton, FL (2015) https://doi.org/10.1201/b18469.

J.A. Lazzus, M. Rivera, I. Salfate, G. Pulgar-Villarroel, P. Rojas, J. Eng. Thermophys. 25 (2) (2016) 216—226. https://doi.org/10.1134/S1810232816020065.

M. Gupta, in Advances in Deep-Fat Frying of Foods, S. Sahin, S.G. Sumnu (Eds.), CRC Press, Boca Raton, FL (2009), pp. 263—286. https://doi.org/10.1201/9781420055597.

H. Wu, H. Jouhara, S.A. Tassou, Appl. Therm. Eng. 51 (2013) 926—936. https://doi.org/10.1016/j.applthermaleng.2012.10.002.

Downloads

Published

19.07.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

OPTIMIZATION OF ENERGY CONSUMPTION DURING IMMERSION FRYING OF PEANUTS: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2), 135-142. https://doi.org/10.2298/CICEQ230116018D

Similar Articles

41-50 of 65

You may also start an advanced similarity search for this article.