NUMERICAL SIMULATION OF THE OSCILLATING THIN PLATE IMPACT ON NANOFLUIDS FLOW IN CHANNEL

Original scientific paper

Authors

  • Kadhum Audaa Jehhef Technical Engineering College – Baghdad, Middle Technical University, Baghdad, Iraq https://orcid.org/0000-0002-8994-9655
  • Musaab Kadem Rasheed Institute of Technology, Middle Technical University, Baghdad, Iraq
  • Mohamed Abed Al Abas Siba Institute of Technology, Middle Technical University, Baghdad, Iraq

DOI:

https://doi.org/10.2298/CICEQ230401017J

Keywords:

Lagrangian- Eulerian (ALE) technique, multiphysics, nanofluid

Abstract

The present numerical study aims to present the effect of a titled oscillating thin plate with different inclination angles on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by the impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-ε) model, and the flow assembly around the thin plate obstacle has been confirmed at the Reynolds number of Re=4×104. It exemplifies how Nanofluid flow interaction can distort structures. The turbulent, two-dimensional, stationary, and incompressible flow around an oscillating thin plate with inclined angles with upstream and downstream mounted inside a horizontal channel was studied. The numerical study includes an investigation of the effect of five inclination angles of the thin plate (30, 60, 90, 120, and 150°) on the pressure, velocity, and temperature contours of the Al2O3-water nanofluid. Also, the study presented the drag profile and left a force on the thin plate caused by the fluid flow. The results showed that a titled oscillating thin plate inside the flow direction increases pressure drop, von Mises deformation stress, x-displacement and drag force fields, and the Nusselt number. Where the pressure increased from 2.61×103 to 6.21×103 pa, the von Mises stress increased from 4.43×106 to 1.78×107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90°.

References

A. Okajima, T. Matsumoto, S. Kimura, JSME Int. J., Ser. B 41(1998) 214. https://doi.org/10.1299/jsmeb.41.214.

J. Carberry, J. Sheridan, D.O. Rockwell, J. Fluids Struct. 15 (2001) 523—532. https://doi.org/10.1006/jfls.2000.0363.

T. Sarpkaya, J. Fluids Struct. 19 (2004) 389—447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.

X. Mao, Yu. Zhibin, Æ. Artur, J. Jaworski, D. Marx, Exp. Fluids 45 (2008) 833—846. https://doi.org/10.1007/s00348-008-0503-7.

M. Dahl Jason, Ph.D. Thesis, Massachusetts Institute of Technology, (2008). http://hdl.handle.net/1721.1/44747.

L. Lee, D. Allen, J. Fluids Struct. 26 (2010) 602—610. https://doi.org/10.1016/j.jfluidstructs.2010.02.002.

X. Amandolèse, P. Hémon, Comptes Rendus Mécanique 338 (2010) 12—17. https://doi.org/10.1016/j.crme.2009.12.001.

Y. Yang, M.Sc. Thesis, The Texas A&M University (2010).

K. Lam, J.C. Hu, P. Liu, Phys. Fluids 22 (2010) 015105. https://doi.org/10.1063/1.3291069.

B. Shrestha, S.N. Ahsan, M. Aurelia, Phys. Fluids 30 (2018) 013102. https://doi.org/10.1063/1.5001330.

S. Zhang, T. Ishihara, Ocean Eng. 163 (2018) 583—598. https://doi.org/10.1016/j.oceaneng.2018.03.060.

X. Sun, Y. Zehua, L. Jiajun, K. Wen,H. Tian, Int. J. Heat Mass Transfer 128 (2019) 319—334. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.123.

D. Yaseen, M.A. Ismael, Exp. Tech. 47 (2022) 37—46. https://doi.org/10.1007/s40799-022-00554-9.

S. Ram, N. Ashok, MD. Shamshuddin, J. of Nanofluids 12 (2023) 777—785. https://doi.org/10.1166/jon.2023.1976.

Usman, S. Shaheen, M.B. Arain, K. S. Nisar, A. Albakri, MD. Shamshuddin, F. O. Mallawi, C. Stud. in Ther. Eng. 41(2023) 102523. https://doi.org/10.1016/j.csite.2022.102523.

MD. Shamshuddin, F. Mabood, W. A. Khan, G. R. Rajput, Heat Trans. 52 (2023) 854—873. https://doi.org/10.1002/htj.22719.

S.O. Salawu, R.A. Kareem, M.D. Shamshuddin, S.U. Khan, Chem. Phys. Lett. 760 (2020) 138011. https://doi/10.1016/j.cplett.2020.138011.

MD. Shamshuddin, P. S. Rao, S.O. Salawu and A.J. Chamkha, J. Proc. Mech. Eng. 236 (2022) 1877—1888. https://doi/10.1177/09544089221076918.

B. C. Pak, Y. I. Cho, Exp. Heat Trans. 11 (1998) 151—170. https://doi.org/10.1080/08916159808946559.

Y. Xuan, W. Roetzel, Int. J. Heat Mass Transfer 43 (2000) 3701—3707. https://doi.org/10.1016/S0017-9310(99)00369-5.

H.C. Brinkman, J. of Chem. Phys. 20 (1952) 571—581. https://doi/10.1063/1.1700493.

J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford University, UK (1881).

S.E. Maiga, B. Nguyen, C. Tam, G. Nicolas, R. Gilles, Superlattices and Microstructures 35 (2004) 543—557. https://doi/10.1016/j.spmi.2003.09.012.

Published

26.06.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

NUMERICAL SIMULATION OF THE OSCILLATING THIN PLATE IMPACT ON NANOFLUIDS FLOW IN CHANNEL: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2). https://doi.org/10.2298/CICEQ230401017J

Similar Articles

31-40 of 43

You may also start an advanced similarity search for this article.