CROSS-LINKED WHOLE CELLS FOR THE SUCROSE TRANSFRUCTOSYLATION REACTION IN A CONTINUOUS REACTOR

Original scientific paper

Authors

  • Beatriz Menossi Ribeiro Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), José Aurélio Vilela Road 11999, km 533, Poços de Caldas-MG, Zip Code 37715-400, Brazil https://orcid.org/0000-0003-2387-7449
  • Leandro da Rin de Sandre Junior Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), José Aurélio Vilela Road 11999, km 533, Poços de Caldas-MG, Zip Code 37715-400, Brazil
  • Giancarlo de Souza Dias Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), José Aurélio Vilela Road 11999, km 533, Poços de Caldas-MG, Zip Code 37715-400, Brazil
  • Michelle da Cunha Abreu Xavier 2 Bioprocess Engineering and Biotechnology Department, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Sevilha, Gurupi-TO, Zip Code 77404-970, Brazil 3 Food Engineering Department, Federal University of Tocantins (UFT), NS Avenue 15, ALCNO-14, Palmas-TO, Zip Code 77001-090, Brazil https://orcid.org/0000-0003-3564-6007
  • Alex Fernando de Almeida 3 Food Engineering Department, Federal University of Tocantins (UFT), NS Avenue 15, ALCNO-14, Palmas-TO, Zip Code 77001-090, Brazil
  • Elda Sabino da Silva Industrial Biotechnology Laboratory, Institute for Technological Research (IPT-SP), Prof. Almeida Prado Avenue 532, University City, São Paulo-SP, Zip Code 05508-901, Brazil https://orcid.org/0000-0001-8258-9936
  • Alfredo Eduardo Maiorano Industrial Biotechnology Laboratory, Institute for Technological Research (IPT-SP), Prof. Almeida Prado Avenue 532, University City, São Paulo-SP, Zip Code 05508-901, Brazil https://orcid.org/0000-0003-1230-5453
  • Rafael Firmani Perna Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), José Aurélio Vilela Road 11999, km 533, Poços de Caldas-MG, Zip Code 37715-400, Brazil https://orcid.org/0000-0003-3195-8898
  • Sergio Andres Villalba Morales Bioprocess Engineering and Biotechnology Department, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Sevilha, Gurupi-TO, Zip Code 77404-970, Brazil 3 Food Engineering Department, Federal University of Tocantins (UFT), NS Avenue 15, ALCNO-14, Palmas-TO, Zip Code 77001-090, Brazil

DOI:

https://doi.org/10.2298/CICEQ221220015M

Keywords:

whole cells, geneous biocatalysts, packed bed reactors, fructooligosaccharides

Abstract

Fructooligosaccharides (FOS) are fructose oligomers beneficial to human health and nutrition for prebiotic sugars. Their production occurs by a transfructosylation reaction in sucrose molecules catalyzed by fructosyltransferase enzymes (FTase, E.C.2.4.1.9) adhered to microbial cells. The purpose of this work was to study the preparation, enzymatic activity, and stability of glutaraldehyde-crosslinked Aspergillus oryzae IPT-301 cells used as a biocatalyst for the transfructosylation reaction of sucrose in a packed bed reactor (PBR), aiming at FOS production. The highest transfructosylation activity (AT) was presented by the biocatalyst prepared by cross-linking at 200 rpm and 45 min. The highest AT in the PBR was obtained at 50 °C, with flow rates from 3 mL min-1 to 5 mL min-1 and sucrose concentrations of 473 g L-1 and 500 g L-1. The enzymatic kinetics was described using the Michaelis-Menten model. Finally, the biocatalyst showed constant AT of approximately 75 U g-1 and 300 U g-1 for 12 h of reaction in the PBR operating in continuous and discontinuous flow, respectively. These results demonstrate a high potential of glutaraldehyde-crosslinked A. oryzae IPT-301 cells as heterogeneous biocatalysts for the continuous production of FOS in PBR reactors.

 

References

J.S. Cunha, C.A. Ottoni, S.A.V. Morales, E.S. Silva, A.E. Maiorano, R.F. Perna, Brazilian J. Chem. Eng. 36 (2019) 657—668. https://doi.org/10.1590/0104-6632.20190362s20180572.

M.B.P.O. Silva, D. Abdal, J.P.Z. Prado, G.S. Dias, S.A.V. Morales, M.C.A. Xavier, A.F. de Almeida, E.S. da Silva, A.E. Maiorano, R.F. Perna, Brazilian J. Food Technol. 24 (2021) 1—11. https://doi.org/10.1590/1981-6723.28320.

R.L. Garcia, G.S. Dias, S.A.V. Morales, M.C.A. Xavier, E.S. Silva, A.E. Maiorano, P.W. Tardioli, R.F. Perna, Brazilian J. Chem. Eng. 38 (2021) 273—285. https://doi.org/10.1007/s43153-021-00110-9.

C. Nobre, E.G.A. Filho, F.A.N. Fernandes, E.S. Brito, S. Rodrigues, J.A. Teixeira, L.R. Rodrigues, Lwt. 89 (2018) 58—64. https://doi.org/10.1016/j.lwt.2017.10.015.

G.S. Dias, E.D. Santos, M.C.A. Xavier, A.F. Almeida, E.S. Silva, A.E. Maiorano, R.F. Perna, S.A.V. Morales, J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7163.

A.S.G. Lorenzoni, L.F. Aydos, M.P. Klein, M.A.Z. Ayub, R.C. Rodrigues, P.F. Hertz, J. Mol. Catal. B Enzym. 111 (2015) 51—55. https://doi.org/10.1016/j.molcatb.2014.11.002.

P. Zambelli, L. Tamborini, S. Cazzamalli, A. Pinto, S. Arioli, S. Balzaretti, F.J. Plou, L. Fernandez-Arrojo, F. Molinari, P. Conti, D. Romano, Food Chem. 190 (2016) 607—613. https://doi.org/10.1016/j.foodchem.2015.06.002.

K.H. Jung, S.H. Bang, T.K. Oh, H.J. Park, Biotechnol. Lett. 33 (2011) 1621—1624. https://doi.org/10.1007/s10529-011-0606-8.

E. Aguiar-Oliveira, F. Maugeri, Brazilian J. Chem. Eng. 28 (2011) 363—372. https://doi.org/10.1590/S0104-66322011000300002.

L.L. Faria, S.A.V. Morales, J.P.Z. Prado, G.S. Dias, A.F. de Almeida, M.C.A. Xavier, E.S. da Silva, A.E. Maiorano, R.F. Perna, Biotechnol. Lett. 43 (2021) 43—59. https://doi.org/10.1007/s10529-020-03016-7.

L.A. Garcia, J.P.Z. Prado, S.A.V. Morales, M.C.A. Xavier, M.S. Lopes, E.S. da Silva, A.E. Maiorano, R.F.K. Gunnewiek, R.F. Perna, Mater. Today Commun. 31 (2022). https://doi.org/10.1016/j.mtcomm.2022.103588.

L. Canilha, W. De Carvalho, Biotecnol. Ciência e Desenvolv. Ano IX. (2006) 48—57.

C.C. Castro, C. Nobre, M.E. Duprez, G. De Weireld, A.L. Hantson, Biochem. Eng. J. 118 (2017) 82—90. https://doi.org/10.1016/j.bej.2016.11.011.

R.C. Fernandez, C.A. Ottoni, E.S. Da Silva, R.M.S. Matsubara, J.M. Carter, L.R. Magossi, M.A.A. Wada, M.F. De Andrade Rodrigues, B.G. Maresma, A.E. Maiorano, Appl. Microbiol. Biotechnol. 75 (2007) 87—93. https://doi.org/10.1007/s00253-006-0803-x.

M.C.P. Gonçalves, S.A.V. Morales, E.S. Silva, A.E. Maiorano, R.F. Perna, T.G. Kieckbusch, J. Chem. Technol. Biotechnol. 95 (2020) 2473—2482. https://doi.org/10.1002/jctb.6429.

C.A. Ottoni, R. Cuervo-Fernández, R.M. Piccoli, R. Moreira, B. Guilarte-Maresma, E.S. Da Silva, M.F.A. Rodrigues, A.E. Maiorano, Brazilian J. Chem. Eng. 29 (2012) 49—59. https://doi.org/10.1590/S0104-66322012000100006.

M.A. Ganaie, H.K. Rawat, O.A. Wani, U.S. Gupta, N. Kango, Process Biochem. 49 (2014) 840—844. https://doi.org/10.1016/j.procbio.2014.01.026.

A.A. Homaei, R. Sahiri, F. Vianello, R. Stevanato, J. Chem. Biol. 6 (2013) 185—205. https://doi.org/10.1007/s12154-013-0102-9.

E.L. Cussler, Diffusion mass transfer in fluid systems, Cambridge University Press, New York (2009), p. 655. ISBN: 9780521871211.

H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, (2019), p. 993. ISBN: 9780133887518.

C.J. Geankopolis, Transport Process and Unit Operations, Prentice-Hall International, New Jersey (1993), p. 937. ISBN: 0-13-045253-X.

M. Starzak, S.D. Peacock, Zuckerindustrie. 122 (1997) 380—387. ISSN 03448657. https://www.researchgate.net/publication/286862720.

M. Mathlouthi, P. Reiser, Sucrose: Properties and Applications, Chapman & Hall, (1995), p. 307. ISBN: 9781461361503.

I.M. Araújo, P.C. Becalette, E.S. da Silva, G.S. Dias, M.C.A. Xavier, A.F. de Almeida, A.E. Maiorano, S.A.V. Morales, R.F. Perna, J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7255.

J. Nielsen, Adv. Biochem. Eng. Biotechnol. 46 (1992) 187—223. https://doi.org/10.1007/bfb0000711.

V.G. Elizei, S.M. Chalfoun, D.M. dos S. Botelho, P.P.R. Rebelles, Arq. Inst. Biol., Sao Paulo 81 (2014) 165—172. https://doi.org/10.1590/1808-1657001032012.

I.A. Soares, A.C. Flores, L. Zanettin, H.K. Pin, M.M. Mendonça, R.P. Barcelos, L.R. Trevisol, R.D. Carvalho, D. Schauren, C.L. de M.S.C. da Rocha, S. Baroni, Cienc. e Tecnol. Aliment. 30 (2010) 700—705. https://doi.org/10.1590/S0101-20612010000300021.

K. Long, H.M. Ghazali, A. Ariff, K. Ampon, C. Bucke, Biotechnol. Lett. 18 (1996) 1169—1174. https://doi.org/10.1007/bf01398317.

T. Sun, W. Du, D. Liu, L. Dai, Process Biochem. 45 (2010) 1192—1195. https://doi.org/10.1016/j.procbio.2010.03.037.

O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem. 47 (2012) 1220—1227. https://doi.org/10.1016/j.procbio.2012.04.019.

J.M. Guisan, Immobilization of Enzymes and Cells, Humana Press, New York (2013), p. 375. ISBN: 978-1-62703-550-7.

A.E. Maiorano, E.S. da Silva, R.F. Perna, C.A. Ottoni, R.A.M. Piccoli, R.C. Fernandez, B.G. Maresma, M.F.A. Rodrigues, Biotechnol. Lett. 42 (2020) 2619—2629. https://doi.org/10.1007/s10529-020-03006-9.

J.S. Lim, J.H. Lee, J.M. Kim, S.W. Park, S.W. Kim, Biotechnol. Bioprocess Eng. 11 (2006) 100—104. https://doi.org/10.1007/BF02931891.

J. Su, S. Jia, X. Chen, H. Yu, J. Appl. Phycol. 20 (2008) 213—217. https://doi.org/10.1007/s10811-007-9221-4.

I. Mahasiswa, E. Indonesia, U.G. Mada, World J. Chem. 4 (2009) 34—38.

Y. Bakri, A. Mekaeel, A. Koreih, Brazilian Arch. Biol. Technol. 54 (2011) 659—664. https://doi.org/10.1590/s1516-89132011000400003.

I.L. Furlani, B.S. Amaral, R. V. Oliveira, Q.B. Cassa, Quim. Nova. 43 (2020) 463—473. https://doi.org/10.21577/0100-4042.20170525.

P.A. Fields, Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 129 (2001) 417—431. https://doi.org/10.1016/S1095-6433(00)00359-7.

V.M. Almeida, S.R. Marana, PLoS One. 14 (2019) 1—8. https://doi.org/10.1371/journal.pone.0212977.

E. Gomes, M.A.U. Guez, N. Martin, R. da Silva, Quim. Nova. 30 (2007) 136—145. https://doi.org/10.1590/S0100-40422007000100025.

D. de Andrades, N.G. Graebin, M.K. Kadowaki, M.A.Z. Ayub, R. Fernandez-Lafuente, R.C. Rodrigues, Int. J. Biol. Macromol. 129 (2019) 672—678.https://doi.org/10.1016/j.ijbiomac.2019.02.057.

M. Antošová, M. Polakovič, Chem. Pap. 55 (2001) 350—358. https://www.chempap.org/file_access.php?file=556a350.pdf.

P. Monsan, J. Mol. Catal. 3 (1978) 371—384. https://doi.org/10.1016/0304-5102(78)80026-1.

R. Satar, M.A. Jafri, M. Rasool, S.A. Ansari, Brazilian Arch. Biol. Technol. 60 (2017) 1—12. https://doi.org/10.1590/1678-4324-2017160311.

H. Veny, M.K. Aroua, N.M.N. Sulaiman, Chem. Eng. J. 237 (2014) 123—130. https://doi.org/10.1016/j.cej.2013.10.010.

W. Sieng, A. Yuniarto, J. Environ. Chem. Eng. 7 (2019) 103185. https://doi.org/10.1016/j.jece.2019.103185.

Downloads

Published

25.06.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

CROSS-LINKED WHOLE CELLS FOR THE SUCROSE TRANSFRUCTOSYLATION REACTION IN A CONTINUOUS REACTOR: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2), 99-110. https://doi.org/10.2298/CICEQ221220015M

Similar Articles

11-19 of 19

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)