SYSTEM DEVELOPMENT FOR MONITORING THE PRODUCTION PROCESS OF FREEZE-DRIED SAMPLES: A SIMPLE AND LOW-COST APPROACH

Original scientific paper

Authors

  • Vanessa Dal-Bó Federal University of São Carlos, Department of Chemical Engineering, Drying Center of Pastes, Suspensions and Seeds, Rod. Washington Luiz, km 235, P.O. Box 676, 13565-905, São Carlos, São Paulo, Brazil https://orcid.org/0000-0001-7791-4976
  • Heitor Otacílio Nogueira Altino Federal University of São Carlos, Department of Chemical Engineering, Drying Center of Pastes, Suspensions and Seeds, Rod. Washington Luiz, km 235, P.O. Box 676, 13565-905, São Carlos, São Paulo, Brazil and Federal University of Uberlandia, Faculty of Chemical Engineering, Av. João Naves de Ávila, 2121, Block 1K, 38408-100 Uberlândia, MG, Brazil https://orcid.org/0000-0002-9888-1904
  • José Teixeira Freire Federal University of São Carlos, Department of Chemical Engineering, Drying Center of Pastes, Suspensions and Seeds, Rod. Washington Luiz, km 235, P.O. Box 676, 13565-905, São Carlos, São Paulo, Brazil https://orcid.org/0000-0002-8412-6801

DOI:

https://doi.org/10.2298/CICEQ220821016D

Keywords:

lyophilization, drying, freezing, heating temperature, Arduino, avocado

Abstract

The data acquisition from the freeze-drying process is important for obtaining freeze-dried samples with the desired final moisture content under various operating conditions. The current study extensively presents a simple and low-cost methodology for implementing a data acquisition system in a laboratory-scale freeze dryer. The results showed that higher drying temperatures (40 °C) increased the errors involved in measuring the mass of material; nevertheless, the application of correction blank curves statistically significantly reduced those errors. In general, the system developed provided precise and accurate measurements of the temporal changes in the sample mass and temperature, and chamber pressure variations, allowing monitoring of the production process of freeze-dried samples with low final moisture contents.

References

G. Caliskan, S.N. Dirim, Heat Mass Transfer 53 (2017) 2129—2141. https://doi.org/10.1007/s00231-017-1967-x.

Y. Wang, X. Li, X. Chen, B. Li, X. Mao, J. Miao, C. Zhao, L. Huang, W. Gao, Chem. Eng. Process. 129 (2018) 84—94. https://doi.org/10.1016/j.cep.2018.03.020.

E. Lopez-Quiroga, L.T. Antelo, A.A. Alonso, J. Food Eng. 111 (2012) 655—666. https://doi.org/10.1016/j.jfoodeng.2012.03.001.

L.G. Marques, M.C. Ferreira, J.T. Freire, Chem. Eng. Process. 46 (2007) 451—457. https://doi.org/10.1016/j.cep.2006.04.011.

R.L. Monteiro, B.A.M. Carciofi, A. Marsaioli, J.B. Laurindo, J. Food Eng. 166 (2015) 276—284. https://doi.org/10.1016/j.jfoodeng.2015.06.029.

A.S. Mujumdar, Handbook of Industrial Drying, CRC Press, Boca Raton, (2014), p. 1352. https://doi.org/10.1080/07373938808916399.

X.C. Tang, M.J. Pikal, Pharm. Res. 21 (2004) 191—200. https://doi.org/10.1023/B:PHAM.0000016234.73023.75.

V. Dal-Bó, J.T. Freire, Food Control. 132 (2022) 108526. https://doi.org/10.1016/j.foodcont.2021.108526.

A. Carullo, A. Vallan, Measurement 45 (2012) 1706—1712. https://doi.org/10.1016/j.measurement.2012.04.017.

G. Tribuzi, J.B. Laurindo, Dry. Technol. 32 (2014) 1119—1124. https://doi.org/10.1080/07373937.2014.886258.

V. Kirrmaci, H. Usta, T. Menlik, Dry. Technol. 26 (2008) 1570—1576. https://doi.org/10.1080/07373930802467037.

J.P. George, A.K. Datta, J. Food Eng. 52 (2002) 89—93. https://doi.org/10.1016/S0260-8774(01)00091-7.

T. Menlik, M.B. Özdemir, V. Kirmaci, Expert Syst. Appl. 37 (2010) 7669—7677. https://doi.org/10.1016/j.eswa.2010.04.075.

C. Moino, E. Bourlés, R. Pisano, B. Scutellà, Ind. Eng. Chem. Res. 60 (2021) 9637—9645. https://doi.org/10.1021/acs.iecr.1c00536.

S.C. Schneid, H. Gieseler, W.J. Kessler, S.A. Luthra, M.J. Pikal, AAPS PharmSciTech. 12 (2011) 379—387. https://doi.org/10.1208/s12249-011-9600-7.

X. (Charlie) Tang, S.L. Nail, M.J. Pikal, Pharm. Res. 22 (2005) 685—700. https://doi.org/10.1007/s11095-005-2501-2.

P. Chouvenc, S. Vessot, J. Andrieu, P. Vacus, Dry. Technol. 22 (2004) 1577—1601. https://doi.org/10.1081/DRT-200025605.

R. Daoussi, S. Vessot, J. Andrieu, O. Monnier, Chem. Eng. Res. Des. 87 (2009) 899—907. https://doi.org/10.1016/j.cherd.2008.09.007.

S.A. Velardi, H. Hammouri, A.A. Barresi, Chem. Eng. Res. Des. 87 (2009) 1409—1419. https://doi.org/10.1016/j.cherd.2009.03.011.

C. Vilas, A.A. Alonso, E. Balsa-Canto, E. López-Quiroga, I.C. Trelea, Processes 8 (2020) 1—21. https://doi.org/10.3390/pr8030325.

R. Pisano, Dry. Technol. 40 (2022) 140—157. https://doi.org/10.1080/07373937.2020.1774891.

A.A. Barresi, R. Pisano, D. Fissore, V. Rasetto, S.A. Velardi, A. Vallan, M. Parvis, M. Galan, Chem. Eng.

Process. Process Intensif. 48 (2009) 408—423. https://doi.org/10.1016/j.cep.2008.05.004.

A. Vallan, Instrumentation and Measurement Technology Conference, in Proceeding of IEEE Instrumentation & Measurement Technology Conference, Warsaw, Poland, (2007). p. 1—5. https://doi.org/10.1109/IMTC.2007.379000.

M.J. Pikal, S. Shah, D. Senior, J.E. Lang, J. Pharm. Sci. 72 (1983) 635—650. https://doi.org/10.1002/jps.2600720614.

C. Roth, G. Winter, G. Lee, J. Pharm. Sci. 90 (2001) 1345—1355. https://doi.org/10.1002/jps.1087.

J. Xiang, J.M. Hey, V. Liedtke, D.. Wang, Int. J. Pharm. 279 (2004) 95—105. https://doi.org/10.1016/j.ijpharm.2004.04.011.

D. Fissore, R. Pisano, A.A. Barresi, Dry. Technol. 36 (2018) 1839—1865. https://doi.org/10.1080/07373937.2018.1440590.

G. Rovero, S. Ghio, A.A. Barresi, Chem. Eng. Sci. 56 (2001) 3575—3584. https://doi.org/10.1016/S0009-2509(01)00025-2.

S. Grassini, S. Corbellini, M. Parvis, E. Angelini, F. Zucchi, Meas.: J. Int. Meas. Confed. 114 (2018) 508—514. https://doi.org/10.1016/j.measurement.2016.07.014.

V.D. Sabadoti, A.C. Miano, P.E.D. Augusto, J. Food Process. Preserv. 44 (2020) 1—10. https://doi.org/10.1111/jfpp.14769.

O.I. Obajemihi, J.O. Olaoye, J.H. Cheng, J.O. Ojediran, D.W. Sun, J. Food Process. Preserv. 45 (2021) 1—14. https://doi.org/10.1111/jfpp.15287.

A. D’Ausilio, Behav. Res. Methods 44 (2012) 305—313. https://doi.org/10.3758/s13428-011-0163-z.

A. Kilpela, Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications, University of Oulu, (2004) p. 98. https://oulurepo.oulu.fi/handle/10024/35963.

X. Li, B. Yang, X. Xie, D. Li, L. Xu, Sensors (Switzerland). 18 (2018) 1—16. https://doi.org/10.3390/s18041156.

AOAC, Official methods of analysis of Association of Official Analytical Chemists, AOAC, Arlington (1990), p. 771. ISBN 0-935584-42-0.

P. Jacobs, Thermodynamics, Imperial College Press, London (2013), p. 456. ISBN 184816971X.

W. Yang, D.E.O. III, R.O.W. III, in Formulating Poorly Water Soluble Drugs, R.O. Williams III, A. B. Watts, D. A. Miller, Springer, New York (2012), p. 646. https://doi.org/10.1007/978-1-4614-1144-4.

A. Bhushani, C. Anandharamakrishnan, in Handbook of Drying for Dairy Products, C. Anandharamakrishnan, John Wiley & Sons, Chichester (2017) p. 316. https://doi.org/10.1002/9781118930526.ch6.

O. Taskin, Heat Mass Transfer 56 (2020) 2503—2513. https://doi.org/10.1007/s00231-020-02867-0.

T. Kovacı, E. Dikmen, A.Ş. Şahin, J. Food Process Eng. 43 (2020) 1—9. https://doi.org/10.1111/jfpe.13528.

L.L. Huang, M. Zhang, A.S. Mujumdar, D.F. Sun, G.W. Tan, S. Tang, Dry. Technol. 27 (2009) 938—946. https://doi.org/10.1080/07373930902901844.

I. Dincer, M.A. Rosen, Energy, Environment and Sustainable Development, Springer, Vienna, (2012) p. 349. https://doi.org/10.1007/978-3-7091-0109-4.

Y.A. Çengel, M.A. Boles, Thermodynamics: an engineering approach, Mc Graw Hill Education, New York, (2014) p. 1024. ISBN 9780073398174.

A. Midilli, H. Kucuk, Z. Yapar, Dry. Technol. 20 (2002) 1503–1513. https://doi.org/10.1081/DRT-120005864.

T. Kopczynski, Five Factors That Can Affect Your Weighing System’s Accuracy, Hardy, San Diego, (2011). https://www.hardysolutions.com/images/uploaded/5Factors_WP_0323%20(1).pdf.

C.D. Johnson, Process Control Instrumentation Technology, Pearson Education Limited, Harlow, (2013) p. 684. ISBN 9781292026015.

A.L. Silva, M. Varanis, A.G. Mereles, C. Oliveira, J.M. Balthazar, Rev. Bras. Ensino Fis. 41 (2019). https://doi.org/10.1590/1806-9126-RBEF-2018-0206.

A.R. Gorbushin, A.A. Bolshakova, Measurement 152 (2020) 107381. https://doi.org/10.1016/j.measurement.2019.107381.

W. Hernandez, Sensors 6 (2006) 697—711. https://doi.org/10.3390/s6070697.

I. Muller, R. De Brito, C.E. Pereira, V. Brusamarello, IEEE Instrum. Meas. Mag. 13 (2010) 15—19. https://doi.org/10.1109/MIM.2010.5399212.

A. Karaus, H. Paul, Measurement 10 (1992) 133—139. https://doi.org/10.1016/0263-2241(92)90009-S.

G. Levi, M. Karel, Food Res. Int. 28 (1995) 145—151. https://doi.org/10.1016/0963-9969(95)90798-F.

M.J. Pikal, S. Shah, Int. J. Pharm. 62 (1990) 165—186. https://doi.org/10.1016/0378-5173(90)90231-R.

D.S. Souza, L.G. Marques, E. de B. Gomes, N. Narain, Dry. Technol. 33 (2015) 194—204. https://doi.org/10.1080/07373937.2014.943766.

R.J. Brandão, M.M. Prado, L.G. Marques, Defect Diffus. Forum 365 (2015) 11—16. https://doi.org/10.4028/www.scientific.net/ddf.365.11.

K. Altay, A.A. Hayaloglu, S.N. Dirim, Heat Mass Transfer 55 (2019) 2173—2184. https://doi.org/10.1007/s00231-019-02570-9.

W. Liu, M. Zhang, B. Adhikari, J. Chen, Innov. Food Sci. Emerg. Technol. 66 (2020) 102516. https://doi.org/10.1016/j.ifset.2020.102516.

X. Duan, X. Yang, G. Ren, Y. Pang, L. Liu, Y. Liu, Dry. Technol. 34 (2016) 1271—1285. https://doi.org/10.1080/07373937.2015.1099545.

X. Cao, M. Zhang, A.S. Mujumdar, Q. Zhong, Z. Wang, Ultrason. Sonochem. 40 (2018) 333—340. https://doi.org/10.1016/j.ultsonch.2017.06.014.

T. Baysal, N. Ozbalta, S. Gokbulut, B. Capar, O. Tastan, G. Gurlek, F. Engineering, M. Engineering, K. Tarihi, J. Therm. Sci. Technol. 35 (2015) 135—144. http://tibtd.org.tr/2015-1/135-144.pdf.

Graphical Abstract

Published

25.06.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

SYSTEM DEVELOPMENT FOR MONITORING THE PRODUCTION PROCESS OF FREEZE-DRIED SAMPLES: A SIMPLE AND LOW-COST APPROACH: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2), 111-122. https://doi.org/10.2298/CICEQ220821016D

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)