INTERNAL MODEL CONTROL OF CUMENE PROCESS USING ANALYTICAL RULES AND EVOLUTIONARY COMPUTATION

Original scientific paper

Authors

  • Vinila Mundakkal Lakshmanan Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India and Department of Robotics and Automation, Adi Shankara Institute of Engineering and Technology, Kalady, India https://orcid.org/0000-0002-7847-1473
  • Aparna Kallingal Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India https://orcid.org/0000-0002-0043-7355
  • Sreepriya Sreekumar Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India and Department of Robotics and Automation, Adi Shankara Institute of Engineering and Technology, Kalady, India

DOI:

https://doi.org/10.2298/CICEQ220711014M

Keywords:

IMC PI, IMC PID, Skogestad half rule, Zeigler Nichols, PSO PI

Abstract

Cumene is a precursor for producing many organic chemicals and is thinner in paints and lacquers. Its production process involves one of the large-scale manufacturing processes with complex kinetics. Different classical control strategies have been implemented and compared in this process for the cumene reactor. As a system with large degrees of freedom, a novel approach for extracting the state space model from the COMSOL Multiphysics implementation of the system is adopted here. Internal Modern Control (IMC) based PI and PID controllers are derived for the system. The system is reduced to the FOPDT and SOPDT model structure to derive the controller setting using Skogestad half rules. The integral time is modified for excellent set point tracking and faster disturbance rejection. From the analysis, it can be stated that the PI controller suits more for this specific process. The particle swarm optimization (PSO) algorithm, an evolutionary computation technique, is also used to tune the PI settings. The PI controllers with IMC, Zeigler Nichols, and PSO tuning are compared, and it can be concluded that the PSO PI controller settles at 45 s without any oscillations and settles down faster for the disturbance of magnitude 0.5 applied at t = 800 s. However, it is computationally intensive compared to other controller strategies.

References

S. Skogestad, J. Process Control. 13 (2003) 291—309. https://doi.org/10.1016/S0959-1524(02)00062-8.

J.G. Ziegler, N.B. Nichols, Trans. ASME. 64 (1942) 759—765. https://doi.org/10.1115/1.4019264.

D.E. Rivera, M. Morari, S. Skogestad, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 252—265. https://doi.org/10.1021/i200032a041.

B.D. Tyreus, W.L. Luyben, Ind. Eng. Chem. Res. 31 (1992) 2625—2628. https://doi.org/10.1021/ie00011a029.

K.J. Astrom, P.I.D. Controllers, Theory, Design, and Tuning, Instrument Society of America, Research Triangle Park, North Carolina (1995).

K.J. Astrom, T. Hägglund, J. Process Control. 14 (2004) 635—650. https://doi.org/10.1016/j.jprocont.2004.01.002.

R. Eberhart, J. Kennedy, Particle Swarm Optimization, in Proceedings of the IEEE International Conference on Neural Networks, Citeseer, (1995) 1942—1948.

W. Zeng, W. Zhu, T. Hui, L. Chen, J. Xie, T. Yu, Nucl. Eng. Des. 360 (2020) 110513. https://doi.org/10.1016/j.nucengdes.2020.110513.

F. Marini, B. Walczak, Chemom. Intell. Lab. Syst. 149 (2015) 153—165. https://doi.org/10.1016/j.chemolab.2015.08.020.

D. Wang, D. Tan, L. Liu, Soft Comput. 22 (2018) 387—408. https://doi.org/10.1007/s00500-016-2474-6.

F. Mahmoudian, A.H. Moghaddam, S.M. Davachi, Can. J. Chem. Eng. 100 (2022). 90—102.

https://doi.org/10.1002/cjce.24072.

A.H. Moghaddam, J. Shayegan, J. Sargolzaei, J. Taiwan Inst. Chem. Eng. 62 (2016) 150—157. https://doi.org/10.1016/j.jtice.2016.01.024.

A. HedayatiMoghaddam, H. Hazrati, J. Sargolzaei, J. Shayegan, A, Appl. Water Sci. 7 (2017) 2753—2765. doi:10.1007/s13201- 016-0503-3.

H. Vaziri, A. HedayatiMoghaddam, S.A. Mirmohammadi,Chem. Pap. 74 (2020) 3311—3324. doi:10.1007/s11696-020-01162-w.

S. Bennett, Annu. Rev. Control 25 (2001) 43—53. https://doi.org/10.1016/S1367-5788(01)00005-0.

V.M. Lakshmanan, A. Kallingal, S. Sreekumar,, J. Indian Chem. Soc. 99 (2022) 100730. https://doi.org/10.1016/j.jics.2022.100730.

V.M. Lakshmanan, A. Kallingal, S. Sreekumar,, J. Control Decis. (2022) 1—11. https://doi.org/10.1080/23307706.2022.2146009

V. Gera, M. Panahi, S. Skogestad, N. Kaistha, Ind. Eng. Chem. Res. 52 (2013) 830—846. https://doi.org/10.1021/ie301386h.

A. Chudinova, A. Salischeva, E. Ivashkina, O. Moizes, A. Gavrikov, Procedia Chem. 15 (2015) 326—334. https://doi.org/10.1016/j.proche.2015.10.052.

V.M. Lakshmanan, A. Kallingal, S. Sreekumar, Int. J. Chem. React. Eng. (2021) 1—17. https://doi.org/10.1080/23307706.2022.2146009.

X. Yang, S. Wang, B. Li, Y. He, H. Liu, Fuel 274 (2020) 117829. https://doi.org/10.1016/j.fuel.2020.117829.

H.M. Park, Int. J. Heat Mass Transfer 116 (2018) 520—531. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.035.

U.M. Nath, C. Dey, R.K. Mudi, IETE J. Res. (2021) 1—21. https://doi.org/10.1080/03772063.2021.1874839.

S.K. Pradhan, D. Acharya, D.K. Das, Ann. Nucl. Energy 165 (2022) 108675. https://doi.org/10.1016/j.anucene.2021.108675.

Z. Nie, Z. Li, Q. Wang, Z. Gao, J. Luo,Int. J. Robust Nonlinear Control. (2021). https://doi.org/10.1002/rnc.5848.

S. Sreekumar, A. Kallingal, L.V. Mundakkal, Chem. Ind. Chem. Eng. Q. 28(2) (2022) 127—134. https://doi.org/10.2298/CICEQ200911031S.

P.G. Junqueira, P.V Mangili, R.O. Santos, L.S. Santos, D.M. Prata, Chem. Eng. Process. 130 (2018) 309—325. https://doi.org/10.1016/j.cep.2018.06.010.

M.L. Vinila, K. Aparna, S. Sreepriya, in Int. Conf.Intell.Comput.Inf.Control Syst., Springer, 2019: pp. 201—208. https://doi.org/10.1007/978-3-030-30465-2_23.

Published

25.06.2023 — Updated on 09.12.2023

Issue

Section

Articles

How to Cite

INTERNAL MODEL CONTROL OF CUMENE PROCESS USING ANALYTICAL RULES AND EVOLUTIONARY COMPUTATION: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(2), 89-98. https://doi.org/10.2298/CICEQ220711014M

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)