HOT-AIR DRYING AND DEGRADATION KINETICS OF BIOACTIVE COMPOUNDS OF GILABURU (Viburnum opulus L.) FRUIT

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ220614011D

Keywords:

antioxidant capacity, drying kinetic, gilaburu, trans-resveratrol, total phenolic content, water-soluble vitamins

Abstract

This study aims to determine whether drying is a suitable preservation method for gilaburu fruit and the changes in the bioactive components of gilaburu fruit (Viburnum opulus L.) at the end of the drying process. In this study, gilaburu fruits were dried in a cabinet dryer at different temperatures (50 °C, 60 °C, and 70 °C). The analyses of trans-resveratrol, water-soluble vitamins, organic acids, and phenolic compounds were made using the HPLC method, while total phenolic contents and antioxidant activity were spectrophotometric. As a result of drying of gilaburu fruit at 50 °C, 60 °C, and 70 °C, the highest component loss was observed at 70 °C. Losses of 73.64% and 84.08%, respectively, were detected in the total phenolic substance and antioxidant capacity content of gilaburu fruit after drying at 70 °C. While the trans-resveratrol content was 1.26±0.05 (g/100 g dry weight (DW)) in fresh fruit, it reduced to 0.31±0.03, 0.30±0.01 and 0.21±0.01 after drying at 50 °C, 60 °C and 70 °C, respectively. In terms of vitamins, the highest loss was seen in niacin. The contents of ascorbic acid, pyridoxine, niacin and thiamine contents of fresh gilaburu fruit decreased after drying at 50 °C, 60 °C and 70 °C. In addition, drying kinetics of water-soluble vitamins, total phenolic contents, antioxidant activity, and trans-resveratrol were modeled. The Page model best described the drying behavior of fruits at 70 °C, and the parabolic model at both 50 °C and 60 °C. Thermal degradation of water-soluble vitamins, total phenolic contents, antioxidant activity, and trans-resveratrol were fitted in the first-order kinetic model.

References

N. Ersoy, S. Ercisli, M. Gundogdu, J. Hortic. 29 (2) (2017) 181—188. https://doi.org/10.1515/fhort-2017-0017.

J. S. Singh., A. S. Raghubanshi, C.K. Varshney, Curr. Sci. 66 (2) (1994) 109—112. https://www.jstor.org/stable/24109236.

T. Baytop, Additive, Nobel Medicine Bookstores, İstanbul (1999), p. 198.

A. Lobstein, G. Haan-Archipoff, J. Englert, J.G. Kuhry, R. Anton, Phytochemistry 50 (7) (1999) 1175—1180. https://doi.org/10.1016/S0031-9422(98)00681-5.

N. Gulesci, Gelisim Univ. J. Health Sci. 9 (2019) 920—928. https://doi.org/10.38079/igusabder.594480.

E. Ozer, İ.H. Kalyoncu, J. Selcuk Univ. Fac. Agric. 21 (2007) 46—52. http://sjafs.selcuk.edu.tr/sjafs/article/view/341.

E. Ozer, MSc. Thesis, Selcuk University, Institute of Science, Konya, (2000) Turkey

E. Orakcı, Graduation Thesis, Erciyes University, Faculty of Pharmacy, Kayseri, (2010) Turkey.

M.C. Witmer, Ecol. Soc. Am. 82 (11) (2001) 3120—3130. https://doi.org/10.1890/0012-9658(2001)082[3120:NIAFRC]2.0.CO;2.

L. Česonienė, R. Daubaras, J. Venclovienė, P. Viškelis, Open Life Sci. 5 (6) (2010) 864—871. https://doi.org/10.2478/s11535-010-0088-z.

M. Soylak, L. Elci, S. Saracoglu, U. Divrikli, Asian J. Chem. 14 (2002) 135—138. http://www.scopus.com/inward/record.url?eid=2-s2.0-0036325673&partnerID=MN8TOARS.

C. Ustun, Ph.D. Thesis, Ege University, Institute of Health Sciences, Izmir, (1998) Turkey.

A. Yuruker, Ph.D. Thesis, Hacettepe University, Institute of Health Sciences, Ankara, (1993) Turkey.

M. Cam, MSc. Thesis, Erciyes University, Institute of Science, Kayseri, (2005) Turkey.

N. Arslan Burnaz, MSc. Thesis, Karadeniz Technical University, Institute of Science, Trabzon, (2007) Turkey.

E. Coteli, F. Karatas, Gumushane Univ. J. Sci. Inst. 6 (2) (2016) 61—66. https://doi.org/10.17714/gufbed.2016.06.007.

M. Zarifikhosroshahi, MSc. Thesis, Cukurova University, Institute of Science, Adana (2015) Turkey.

M. Zarifikhosroshahi, E. Kafkas, J. Cukurova Univ. Sci. Eng. 35 (5) (2018) 41—51. https://fbe.cu.edu.tr/storage/fbeyedek/makaleler/2017/G%C4%B0LABURU%20(Viburnum%20opulus%20L.)%20MEYVELER%C4%B0NDE.pdf.

M.R. Otag, Ph.D. Thesis, Pamukkale University, Institute of Science, Denizli, (2015) Turkey.

M.A. Gundesli, S.H. Attar, I. Degirmenci, G. Nogay, N.E. Kafkas, J. Sci. Eng. Res. 5 (11) (2018) 222—227. https://www.researchgate.net/publication/329802862_Total_Phenol_and_Antioxidant_Activity_of_Kabarcik'_Grape_Vitis_vinifera_L_Variety.

J. Sun, Y.F. Chu, R.H. Liu, X. Wu, J. Agric. Food Chem. 50 (2002) 7449—7454. https://doi.org/10.1021/jf0207530.

L.M. Hung, J.K. Chen, S.S. Huang, R.S. Lee, M.J. Su, Cardiovasc. Res. 47 (3) (2000) 549—555. https://doi.org/10.1016/S0008-6363(00)00102-4.

N. Kocabey, MSc. Thesis, Inonu University, Institute of Science, Malatya, (2013) Turkey.

O. Taskın, G. İzli, N. İzli, J. Agric. Sci. 24 (2018) 349—358. https://doi.org/10.15832/ankutbd.456654.

L. Gokayaz, Z. Yıldız, J. Food Feed Sci. Technol. 22 (2019) 29—36. https://dergipark.org.tr/en/download/article-file/778922.

E. Demiray, Y. Tulek, Heat Mass Transfer 48 (2012) 841—847. https://link.springer.com/article/10.1007/s00231-011-0942-1.

A. Aboud, Pak. J. Nutr. 12 (3) (2013) 250—254. http://pjbs.org/pjnonline/fin2577.pdf.

M. J. Sadler. S. Gibson, K. Whelan, M. A. Ha, J. Lovegrove, J. Higgs, Int. J. Food Sci. Nutr. 70 (6) (2019) 675—687. https://doi.org/10.1080/09637486.2019.1568398.

F. F. Dal, E. Karacabey, Turkish J. Agric. Food Sci. Technol. 9 (sp) (2021) 2547—2551. https://doi.org/10.24925/turjaf.v9isp.2547-2551.4924.

A. Ozcan Aykutlu, E. Yurteri, H. Kuplemez, F. Seyis, Effects Of Drying Methods On Total Phenolic Content And Antioxidant Activity Of Guelder Rose (Viburnum Opulus L.) Collected From Different Altitudes, 2 st -International Congress On Modern Sciences, Tashkent, Uzbekistan (2022) p. 320. https://www.researchgate.net/publication/367168497.

O. Taskin, G. Izli, N. Izli, Int. J. Fruit Sci. 21 (1) (2021) 1008—1017. https://doi.org/10.1080/15538362.2021.1971141.

M. Cam, Y. Hisil, A. Kuscu, Chem. Nat. Compd. 43 (2007) 460—461. https://doi.org/10.1007/s10600-007-0161-7.

J. Bi, A. Yang, X. Liu, X. Wu, Q. Chen, Q. Wang, J. Lv, X. Wang, LWT-Food Sci. Technol. 60 (2) (2015) 1136—1142. https://doi.org/10.1016/j.lwt.2014.10.006.

W.C. Chiang, J.N. Petersen, Int. J. Food Sci. Technol. 20 (1) (1985) 67—78. https://doi.org/10.1111/j.1365-2621.1985.tb01904.x.

I. Doymaz, Heat Mass Transfer 47 (3) (2011) 277—285. https://doi.org/10.1007/s00231-010-0722-3.

W. K. Lewis, J. Ind. Eng. Chem. 13 (5) (1921) 427—432. https://doi.org/10.1021/ie50137a021.

E. Demiray, A. Seker, Y. Tulek, Heat Mass Transfer 53 (5) (2017) 1817—1827. https://doi.org/10.1007/s00231-016-1943-x.

I. Doymaz, J. Food Process. Preserv. 35 (2011) 280—289. https://doi.org/10.1111/j.1745-4549.2009.00454.x.

X. Liu, S.K. Schnell, J.M. Simon, D. Bedeaux, S. Kjelstrup, A. Bardow, T.J.H. Vlugt, J. Phys. Chem. 115 (44) (2011) 12921—12929. https://doi.org/10.1021/jp208360s.

J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975), p. 100.

B. Tepe, R. Ekinci, Ital. J. Food Sci. 33 (1) (2021) 1—15. http://doi.org/10.15586/ijfs.v33i1.1947.

H.S. Batu, C. Kadakal, Ital. J. Food Sci. 33 (1) (2021) 16—28. https://doi.org/10.15586/ijfs.v33i1.1949.

G. Singh, R.S. Pai, Int. Scholarly Res. Not. 2014 (2014) 248635. https://doi.org/10.1155/2014/248635.

Y. Soyer, N. Koca, F. Karadeniz, J. Food Compos. Anal. 16 (5) (2003) 629—636. https://doi.org/10.1016/S0889-1575(03)00065-6.

S.H. Choi, J.B. Ahn, H.J. Kim, N.K. Im, N. Kozukue, C.E. Levin, M. Friedman, J. Agric. Food Chem. 60 (41) (2012) 10245—10255. https://doi.org/10.1021/jf302848u.

Q.H. Gao, C.S. Wu, J.G. Yu, M. Wang, Y.J. Ma, C.L. Li, J. Food Sci. 77 (11) (2012) C1218—C1225. https://doi.org/10.1111/j.1750-3841.2012.02946.x.

V. Bansal, A. Sharma, C. Ghanshyam, M.L. Singla, J. Liq. Chromatogr. Relat. Technol. 38 (5) (2015) 619—624. https://doi.org/10.1080/10826076.2014.936608.

V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16 (1965) 144—158. http://doi.org/10.5344/ajev.1965.16.3.144.

K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19 (6—7) (2006) 669-675. https://doi.org/10.1016/j.jfca.2006.01.003.

A. Zhu, X. Shen, Int. J. Heat Mass Transfer 72 (2014) 345—351. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.001.

H.S. Batu, PhD Thesis, Pamukkale University, Institute of Science, Denizli, (2021) Turkey.

F. B. Tepe, Turkish J. Agric. Food Sci. Technol. 10 (10) (2022) 1877—1883. https://doi.org/10.24925/turjaf.v10i10.1877-1883.5360.

Y. Chen, A. Martynenko, M. Mainguy, Wine Grape Dehydration Kinetics: Effect of Temperature and Sample Arrangement, CSBE/SCGAB 2016 Annual Conference, Halifax, Nova Scotia, Canada (2016), CSBE16-063.

Y. H. Dong, R. Y. Yang, J. Wei, Y. Xue, R. X. Wang, Z. T. Zhang, L. W. Yang, Advanced Materials Research, Trans Tech Publications Ltd., Switzerland (2013), p. 3038.

C. Leyva-Porras, M. Z. Saavedra-Leos, E. Cervantes-González, P. Aguirre-Bañuelos, M. B. Silva-Cázarez, C. Álvarez-Salas, Antioxidants, 8 (10) (2019) 437. https://doi.org/10.3390/antiox8100437.

I. Choi, N. Li, Q. Zhong, Int. J. Biol. Macromol. 194 (2022) 982—992. https://doi.org/10.1016/j.ijbiomac.2021.11.157.

E. Demiray, Y. Tulek, Y. Yılmaz, LWT Food Sci. Technol. 50 (2013) 172—176. https://doi.org/10.1016/j.lwt.2012.06.001.

T. K. Tepe, C. Kadakal, J. Food Process. Preserv. 46 (6) (2022) e16544. https://doi.org/10.1111/jfpp.16544.

O. Rop, V. Reznicek, M. Valsikova, T. Jurikova, J. Mlcek, D. Kramarova, Molecules, 15 (2010) 4467—4477.

https://doi.org/10.3390/molecules15064467.

M. Akbulut, S. Calisir, T. Marakoglu, H. Coklar, Asian J. Chem. 20 (3) (2008) 1875—1885. https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=20_3_32.

A. Wojdyło, A. Figiel, P. Legua, K. Lech, Á. A. Carbonell-Barrachina, F. Hernández, Food Chem. 207 (2016) 170—179. https://doi.org/10.1016/j.foodchem.2016.03.099.

D. Kim, H. S. Kim, S. J. Hong, J. J. Cho, J. Lee, E. C. Shin, Appl. Biol. Chem. 61 (2018) 449—458. https://doi.org/10.1007/s13765-018-0381-5.

S. Y. Inagamov, G. M. Tajibaev, Z. B. Tursunova, N. B. Sadikova, K. K. Shadmanov, IOP Conf. Ser.: Earth Environ. Sci. 723 (2021) p. 022021.

T. Duman, MSc. Thesis, Pamukkale University, Institute of Science, Denizli, (2014) Turkey.

F. Yasa, MSc. Thesis, Pamukkale University, Institute of Science, Denizli, (2016) Turkey.

I. B. Perova, A. A. Zhogova, A. V. Cherkashin, K. I. Éller, G. V. Ramenskaya, I. A. Samylina, Pharm. Chem. J. 48 (2014) 332—339. https://doi.org/10.1007/s11094-014-1105-8.

D. Polka, A. Podsędek, M. Koziołkiewicz, Plant Foods Hum. Nutr. 74 (2019) 436—442. https://doi.org/10.1007/s11130-019-00759-1.

G. Adiletta, W. Senadeera, L. Liguori, A. Crescitelli, D. Albanese, P. Russo, Food Nutr. Sci. 6 (2015) 355—364. https://doi.org/10.4236/fns.2015.63036.

O. Levent, Ph.D. Thesis, Inonu University, Institute of Science, Malatya, (2017) Turkey.

A. M. Colak, K. Mertoglu, F. Alan, T. Esatbeyoglu, I. Bulduk, E. Akbel, I. Karamanoglu, Foods, 11 (11) (2022) 1614. https://doi.org/10.3390/foods11111614.

M. C. Garau, S. Simal, C. Rossello, A. Femenia, Food Chem. 104 (3) (2007) 1014—1024. https://doi.org/10.1016/j.foodchem.2007.01.009.

M. McSweeney, K. Seetharaman, Crit. Rev. Food Sci. Nutr. 55 (5) (2015) 660—669. https://doi.org/10.1080/10408398.2012.670673.

L. Méndez-Lagunas, J. Rodríguez-Ramírez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230 (2017) 174—181. https://doi.org/10.1016/j.foodchem.2017.03.010.

O. Taskın, G. Izli, N. Izli, Ankara Univ. J. Agric. Sci. 24 (3) (2018) 349—358. https://doi.org/10.15832/ankutbd.456654.

C. Kadakal, T. Duman, R. Ekinci, Food Sci. Technol. 38 (4) (2018) 667—673. https://doi.org/10.1590/1678-457X.11417.

Downloads

Published

15.06.2023 — Updated on 06.10.2023

Issue

Section

Articles

How to Cite

HOT-AIR DRYING AND DEGRADATION KINETICS OF BIOACTIVE COMPOUNDS OF GILABURU (Viburnum opulus L.) FRUIT: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(1), 59-72. https://doi.org/10.2298/CICEQ220614011D

Similar Articles

81-89 of 89

You may also start an advanced similarity search for this article.