BED EXPANSION IN TURBULENT BED CONTACTOR: EXPERIMENTS AND PREDICTION

Original scientific paper

Authors

  • Bensaber Bensebia Laboratory of “Plant Chemistry-Water-Energy”, Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University, B.P. 151, 02000 Chlef, Algeria https://orcid.org/0000-0002-3074-9739
  • Fatma-Zohra Chaouche Laboratory of “Plant Chemistry-Water-Energy”, Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University, B.P. 151, 02000 Chlef, Algeria https://orcid.org/0000-0002-0193-6922
  • Ouahida Bensebia Industrial Process Engineering Sciences Laboratory, Houari Boumediene University of Sciences and Technology, Bab Ezzouar 16025, Algeria https://orcid.org/0009-0004-1133-2497
  • Soumia Kouadri Moustefaï Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University, B.P. 151, 02000 Chlef, Algeria https://orcid.org/0000-0001-9985-6340

DOI:

https://doi.org/10.2298/CICEQ230304010B

Keywords:

Three phase fluidization, turbulent bed contactor, bed expansion, gas holdup, liquid holdup

Abstract

In this work, turbulent bed contractor (TBC) hydrodynamics have been studied in terms of bed expansion (Hd/Hst) using a particular approach to predict this important property for the design of such equipment. The study is based on 1604 sets of experimental data on the bed expansion, obtained by varying the operating variables (gas velocity, liquid spray, packing characteristics, static bed height, and free opening of the supporting grid). The prediction of the bed expansion necessitates the estimation of gas and liquid holdups. To achieve this, we employed a variety of correlations derived from existing literature, comprising six equations for gas holdup and twenty equations for liquid holdup estimation. Out of a total of 120 cases, bed expansion was estimated, and the accuracy of the model was evaluated by calculating the mean absolute error in percentage (MAPE), root mean square error (RMSE), correlation coefficient (ρXY), and explained variance (VECV). This study identified suitable correlations for gas and liquid holdups, leading to predictions with acceptable errors. Furthermore, statistical analysis was employed in a subsequent phase of the study to determine the most appropriate correlations for predicting bed expansion among those proposed by various authors.

References

Z. Arsenijević, T. K. Radoičić, M. Đuriš, Z. Grbavcic, Chem. Ind. Chem. Eng. Q. 21 (4) (2015) 519—526. https://core.ac.uk/download/pdf/299291518.pdf.

S. J. Kulkarni, A. K. Goswami, Int. Res. J. Eng. Tech, 02 (05) (2015) 279—282. https://www.irjet.net/archives/V2/i5/IRJET-V2I551.pdf.

M. L. Gimenes, D. Handley, M. G. C. Silva, Braz. J. Chem. Eng. 24 (1) (2007) 37—45. https://doi.org/10.1590/S0104-66322007000100004.

S. Deagan, Rev. Chim., 70 (11) (2019) 4040—4046. https://doi.org/10.37358/RC.70.19.11.7698.

F.-M. Ilea, A-M. Cormos, S. Dragan, C.-C. Cormos, Chem. Eng. J. 449 (1) (2022) 137674. https://doi.org/10.1016/j.cej.2022.137674.

K. Muroyama, L.-S. Fan, AIChE 31 (1) (1985) 1—34. https://doi.org/10.1002/aic.690310102.

S. Durga Jeevitha, A. Annam Renita, K. Soundarajan, K. Krishnaiah, J. Abbas Mohaideen, Int. J. Appl. Bioeng. 2 (1) (2008) 77—79. https://doi.org/10.18000/ijabeg.10028.

H. A. Khalifeh, M. Alkhedher, S. Fernandes, 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO) (2019) 1—4. https://dspace.adu.ac.ae/handle/1/2777.

S. S. J. Gillani, A. Ullah, M. Zaman, I. R. Chugtai, M. H Inayat, Particuology, 35 (2017) 51—67. https://doi.org/10.1016/j.partic.2016.10.008.

M. Imran, A. Ullah, S. W Ahmad, H. G. Qutab, M. Hameed, Arab. J. Sci. Eng., 45 (2020) 7477—7485. https://doi.org/10.1007/s13369-020-04605-4.

A. Ullah, A. Amanat, M. Imran, S. S. J. Gillani, M. Kilic, A. Khan, Chem. Eng. Process., 156 (2020) 108101. https://doi.org/10.1016/j.cep.2020.108101.

A. Ullah, K. Hong, S. Chilton, W. Nimmo, Powder Technol., 281 (2015) 129—137. https://doi.org/10.1016/j.powtec.2015.03.016.

B. K. O’Neill, D. J. Nicklin, N. J. Morgan, L. S. Leung, Can. J. Chem. Eng. 50 (1972) 595—601. https://doi.org/10.1002/cjce.5450500507.

G. V. Vunjak-Novakovic, D. V. Vukovic, H. Littman, Ind. Eng. Chem. Res. 26 (5) (1987b) 958—966. https://doi.org/10.1021/ie00065a019.

I. P. Levsh, N. I. Krainev, M. I. Niyazov, Int. Chem. Eng. 8 (2) (1968a) 311—312. https://archive.org/details/sim_international-chemical-engineering_1968_8_index-contents/page/n5/mode/2up.

M. Kito, M. Shimada, T. Sakai, S. Sugiyama, C. Y. Wen, in Fluidization Technology, D. L. Kearns (ed.), Hemisphere Publishing Co Washington, (1976b), p. 411—429. ISBN: 089116006X, 9780891160069.

M. Kito, T. Monma, Y. Kayama, T. Sakai, S. Sugiyama, Kagaku Kogaku Ronbunshu 2 (5) (1976a) 476—478. https://doi.org/10.1252/kakoronbunshu.2.476.

M. Kito, K. Tabei, K. Murata, Ind. Eng. Chem. Proc. Design Develop. 17 (4) (1978) 568—571. https://doi.org/10.1021/i260068a030.

B. H. Chen, W. J. M. Douglas, Can. J. Chem. Eng. 46 (1968) 245—249. https://doi.org/10.1002/cjce.5450460406.

J. Tichy, A. Wong, W. J. M Douglas, Can. J. Chem. Eng. 50 (1972) 215—220. https://doi.org/10.1002/cjce.5450500213.

O.S. Balabekov, P.G. Ramankov, E.Ya. Tarat, M.F. Mikhalev, J. Appl. Chem. U.S.S.R. (Engl. Transl.) 42 (1969) 1454—1458. https://searchworks.stanford.edu/view/365872.

O.S. Balabekov, E.Ya. Tarat, P.G. Romankov, M.F. Mikhalev, J. Appl. Chem. USSR 42 (1969a) 1068—1074. Translated from Zhurnal Prikladnoi Khimii 44 (5) (1969) 1061—1068.

S. Ushida, C.S. Wong, C. Y. Wen, Can. J. Chem. Eng. 55 (4) (1977) 392—396. https://doi.org/10.1002/cjce.5450550405.

R. Handl, Ph.D. Thesis, Technischen Universitat Clausthal, R.R.G. (1976).

B. Bensebia, F-Z. Chaouche, S. Kouadri Moustefaï, Kem. Ind. 71 (9—10) (2022) 557—567. https://doi.org/10.15255/KUI.2021.094.

O. P Rama, D.P. Rao, V.S. Rao, Can. J. Chem. Eng. 61 (1983) 863—868. https://doi.org/10.1002/cjce.5450610614.

K. Soundarajan, K. Krishnaiah, Can. J. Chem. Eng. 72 (4) (1994) 569—575. https://doi.org/10.1002/cjce.5450720403.

I. G. Blyakher, L.Ya. Zhivaikin, N.A. Yurovskaya, Chem. Eng. 7 (3) (1967) 485—490. https://doi.org/10.1007/bf01150061.

J. Tichy, W.J.M Douglas, Can. J. Chem. Eng., 50 (1972) 702—706. https://doi.org/10.1002/cjce.5450500604.

B.K. O'Neill, D.J. Nicklin, L.S. Leung, Fluidization and its Applications, Ed. by H. Angelo, J.P. Couderc, H. Gilbert, C. Laguerie, (Ed.), Cepadues-Editions-Toulouse. (1973), 365—371.

G.B. Wallis, One Dimensional Two-Phase Flow. McGraw-Hill Book Company, New York. 1969, 408. https://doi.org/10.1017/S0022112070211362.

B.Z. Uysal, Ph.D. Thesis, McGill, Montreal, 1978. https://escholarship.mcgill.ca/downloads/2227ms35b.pdf.

R.T. Khanna, Ph.D. Dissertation, McGill University. PhD:198, Montreal 1971. https://escholarship.mcgill.ca/downloads/41687j305.pdf.

A. Lyashuk, Research, J. Chem. Pet. Eng. 37 (3—4) (2001) 125—133. https://doi.org/10.1023/A:1017607026104.

I. Shackley, Ph.D. Thesis, Department of Chemical and Process Engineering, University of Sheffield 2000. http://prr.hec.gov.pk/jspui/bitstream/123456789/1974/1/1439S.pdf.

M.L. Gimenes, D.A. Handley, Chem. Eng. Res. Des. 76 (A7): (1998) 855—863. https://doi.org/10.1205/026387698525478.

L.A. Aksel'rod, M.M. Yakovenko, Theor. Found. Chem. Eng. 3 (1969) 124—126. https://link.springer.com/article/10.1023/A:1017607026104.

A. Ul-Haq, Ph.D. Thesis, Pakistan Institute of Engineering and Applied Sciences Nilore Islamabad, Pakistan, 2012. http://prr.hec.gov.pk/jspui/handle/123456789/1974 (accessed 31 May 2014).

M. Kito, M. Sawada, M. Shimada, M. Takada, T. Sakai, S. Sugiyama, Int. Chem. Eng. 16 (2) (1976c) 701. https://doi.org/10.1252/kakoronbunshu.2.12.

A.H.J. Paterson, R. Clift, Canadian Journal of Chemical Engineering. 65 (1987) 10—17. https://doi.org/10.1002/cjce.5450650103.

P. Petrov, Sh. Tassaev, Chem. Ing. Tech. 50 (11) 887—888 (1978). https://doi.org/10.1002/cite.330501118.

K. Soundarajan, K. Krishnaiah, Indian. J. of Chem. Technol. 5 (4) (1998) 179—186. http://nopr.niscpr.res.in/bitstream/123456789/30839/1/IJCT%205%284%29%20179-186.pdf (accessed 22 January 2023).

N.I. Gel'Perin, V.I. Savshenko, V.Z. Grishko, Theor. Chem. Eng. 2 (1) (1968) 65—71. https://istina.msu.ru/workers/39330694/.

N.I. Gelperin, V.A. Liferenko, ,V.Z. Grishko, V.I. Sokolov. Prom. Sanit. Ochistka Gazov (1976) 3 14.

A.E.R. Bruce, P.S.T. Sai, K. Krishnaiah, Chem. Eng. J., 99 (3) (2004) 203—212. https://doi.org/10.1016/j.cej.2003.10.004.

R.G. Barile, D.W. Meyer, Chem. Eng. Prog. Symp. Ser. No 119, Vol. 67, (1971) 134—141. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20014PYW.TXT.

E.Y. Tarat, V.S. Burkat, V.S. Durodova, Journal of Applied Chemistry USSR 47 105—108 (1974). https://searchworks.stanford.edu/view/365872.

K. Soundarajan, K. Krishnaiah, Ind. J. Chem. Technol. 6 (3) (1999) 152—160.

http://nopr.niscpr.res.in/handle/123456789/16916.

G.V. Vunjak-Novakovic, D.V. Vukovic, H. Littman, Ind. Eng. Chem. Res. 26 (5) (1987a) 967—972. https://doi.org/10.1021/ie00065a020.

L. Mbua Egbe, Ph.D. Thesis, Middlesex University UK, 2001. https://eprints.mdx.ac.uk/id/eprint/8005 (accessed 16. November 2021).

Published

13.06.2023 — Updated on 06.10.2023

Issue

Section

Articles

How to Cite

BED EXPANSION IN TURBULENT BED CONTACTOR: EXPERIMENTS AND PREDICTION: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(1), 47-58. https://doi.org/10.2298/CICEQ230304010B