FLUORIDE REMOVAL FROM PHOSPHOGYPSUM: A STUDY ON A PRE-INDUSTRIAL SCALE AND ITS MATHEMATICAL ANALYSIS
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ230203009AKeywords:
Phosphogypsum, fluoride removal, box-behnken design, response surface methodologyAbstract
This study discusses fluoride removal efficiency from phosphogypsum (PG) on a lab-scale experiment matrix designed by the Box-Behnken method. Temperature, solid/liquid ratio, and time were supposed to influence fluoride removal efficiency from PG by various salt solution media. Experiment matrices were designed according to salt solution types: seawater, 5% NaCl, and 10% NaCl solutions. The factor-response analysis showed a direct proportionality between fluoride removal efficiency and temperature. The optimum fluoride removal conditions based on the experimental data obtained by the multi-variable design matrix were determined by the Design Expert v.12 software. The optimum temperature, time, and solid/liquid ratio were 80 °C, 3 h, and 0,174 for seawater. The software predicted a 73,31% fluoride removal efficiency at the optimum conditions, whereas the experimental value was 74,99%. Since the actual vs. predicted data show high consistency, results might also be useful when industrial-scale fluoride removal to a predetermined level is required prior to a particular use of PG. PG has a high potential as an alternative raw material, and fluoride removal might be important in recycling applications. This study provides a novel pre-industrial scale fluoride removal inventory, especially for the fertilizer and cement industry.
References
M. Abdelhadi, N. Abdelhadi, T. El-Hasan, Earth Sci. Res. 7(2) (2018) 28—41. https://doi.org/10.3176/oil.2019.2S.12.
M. Singh, M. Garg, S.S. Rehsi, Const. Build. Mater. 7(1) (1993) 3—7. https://doi.org/10.1016/0950-0618(93)90018-8.
K. Chojnacka, D. Skrzypczak, K. Mikula, A. Witek-Krowiak, G. Izydorczyk, K. Kuligowski, P. Bandrow, M. Kulazynski, J. Clean. Prod. 313 (2021) 1—12. https://doi.org/10.1016/j.jclepro.2021.127902.
L.F.O. Silva, M. L. S. Oliveira, T.J. Crissien, M. Santosh, J. Bolivar, L. Shao, G.L. Dotto, J. Gasparotto, M. Schindler, Chemosphere 286(1) (2022) 1—14. https://doi.org/10.1016/j.chemosphere.2021.131513.
H. Salmenpera, K. Pitkänen, P. Kautto, L. Saikku, J. Clean. Prod. 280(1) (2021) 1—19. https://doi.org/10.1016/j.jclepro.2020.124339.
B. Karshiev, A. Seytnazarov, U. Alimov, S. Namazov, A. Reymov, A. Rasulov, Vopr. Khim. Khim. Tekhnol. 1 (2021) 24—34. https://doi.org/10.32434/0321-4095-2021-134-1-24-34.
Q. Chen, S. Sun, Y. Liu, C. Qi, H. Zhou, Q. Zhang, Int. J. Miner. Metall. 28 (2021) 1440—1452. https://doi.org/10.1007/s12613-021-2274-6.
L. Feng, K. Jin, H. Wang, Coatings 11(7) (2021) 1—12. https://doi.org/10.3390/coatings11070802.
L. Yang, Y. Zhang, Y. Yan, J. Clean. Prod. 127 (2016) 204—213. https://doi.org/10.1016/j.jclepro.2016.04.054.
H. Wang, X. You, J. Tian, X. Cheng, J. Wang, IOP Conf. Ser.: Earth Environ. Sci. 668 (2021) 1—7. https://doi.org/10.1088/1755-1315/668/1/012076.
J. Rosales, M. Gazquez, M. Cabrera, J.P. Bolivar, F. Agrela, in Waste and Bypoducts in Cement-Based Materials- Innovative Sustainable Materials for a Circular Economy, J. de Brito, C. Thomas, C. Medina, F. Agrela Ed., Woodhead Publishing, (2021) 153—189. ISBN: 9780128208953.
W. Cao, W. Yi, J. Li, J. Peng, S. Yin, Const. Build. Mater. 309 (2021) 125190. https://doi.org/10.1016/j.conbuildmat.2021.125190.
C.R. Canovas, R. Perez-Lopez, F. Macias, S. Chapron, J.M. Nieto, S. Pellet-Rostaing, J. Clean. Prod. 143 (2017) 497—505. https://doi.org/10.1016/j.jclepro.2016.12.083.
F. Wu, S. Liu, G. Qu, B. Chen, C. Zhao, L. Liu, J. Li, Y. Ren, J. Adv. Chem. Eng. 9 (2022) 1—11. https://doi.org/10.1016/j.ceja.2021.100227.
K. Ren, N. Cui, S. Zhao, K. Zheng, X. Ji, L. Feng, X. Cheng, N. Xie, Crystals 11(7) (2021) 1—20. https://doi.org/10.3390/cryst11070719.
Z. Wei, Z. Deng, J. Environ. Radioact. 242 (2022) 106778. https://doi.org/10.1016/j.jenvrad.2021.106778.
H. Tayibi, M. Choura, F.A. Lopez, F.J. Alguacil, A. Lopez-Delgado, J. Environ. Manage. 90(8) (2009) 2377—2386. https://doi.org/10.1016/j.jenvman.2009.03.007.
S. Wu, Y. Wang, M. Iqbal, K. Mehmood, Y. Li, Z. Tang, H. Zhang, Environ. Pollut. 304 (2022) 119241. https://doi.org/10.1016/j.envpol.2022.119241.
P. Singh, A. Saxena, J. Geol. Soc. India 98 (2022) 133—138. https://doi.org/10.1007/s12594-022-1939-8.
Y. Chernysh, O. Yakhnenko, V. Chubur, H. Roubik, Appl. Sci. 11 (4) (2021) 1—20. https://doi.org/10.3390/app11041575.
P.M. Rutherford, M.J. Dudas, J.M. Arocena, Environ. Technol. 16(4) (1995) 343—354. https://doi.org/10.1080/09593331608616276.
A. Jeyaseelan, A.A. Ghfar, M. Naushad, N. Viswanathan, J. Environ. Chem. Eng. 9(1) (2021) 1—12. https://doi.org/10.1016/j.jece.2021.105384.
L. Lahlmunsiama, N. Ngainunsiami, D. Kim, D. Tiwari, Chem. Eng. Process. 165 (2021) 1—14. https://doi.org/10.1016/j.cep.2021.108428.
S. Ghosh, A. Malloum, C.A. Igwegbe, J.O. Ighalo, S. Ahmadi, M.H. Dehghani, A. Othmani, Ö. Gökkuş, N.M. Mubarak, J. Mol. Liq. 346 (2022) 118257. https://doi.org/10.1016/j.molliq.2021.118257.
C.F.Z. Lacson, M. Lu, Y. Huang, J. Clean. Prod. 280(1) (2021) 1—20. https://doi.org/10.1016/j.jclepro.2020.124236.
K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Sci. Total Environ. 773 (2021) 1—20. https://doi.org/10.1016/j.scitotenv.2021.145535.
R. Moalla, M. Gargouri, F. Khmiri, L. Kamoun, M. Zairi, Environ. Eng. Res. 23(1) (2018) 36—45. https://doi.org/10.4491/eer.2017.055.
X. Chen, J. Gao, Y., Zhao, Constr. Build. Mater. 229 (2019) 1—9. https://doi.org/10.1016/j.conbuildmat.2019.116864.
M. Du, J. Wang, F. Dong, Z. Wang, F. Yang, H. Tan, K. Fu, W. Wang, Research Square, preprint 1(1) (2021) 1—19. https://doi.org/10.21203/rs.3.rs-888156/v1.
J.S.A. Neto, J.D. Bersch, T.S.M. Silva, E.D. Rodriguez, S. Suziki, A.P. Kirchheim, Constr. Build. Mater. 299 (2021) 1—11. https://doi.org/10.1016/j.conbuildmat.2021.123935.
B. Guan, L. Yang, H. Fu, B. Kong, T. Li, L. Yang. Chem. Eng. J. 174 (1) (2011) 296—303. https://doi.org/10.1016/j.cej.2011.09.033.
Q. Guan, Y. Sui, F. Zhang, W. Yu, Y. Bo, P. Wang, W. Peng, J. Jin, Physicochem. Probl. Miner. Process. 57(1) (2021) 168—181. https://doi.org/10.37190/ppmp/130795.
S.J.S. Chelladuri, K. Murugan, A.P. Ray, M. Upadhyaya, V. Narasimharaj, S. Gnanasekaran, Mater. Today: Proc. 37(2) (2021) 1301—1304. https://doi.org/10.1016/j.matpr.2020.06.466.
N. Manmai, Y. Unpaprom, R. Ramaraj. Biomass Convers. Biorefin. 11 (2021) 1759—1773. https://doi.org/10.1007/s13399-020-00602-7.
M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Appl. Surf. Sci. 258(10) (2012) 4402—4410. https://doi.org/10.1016/j.apsusc.2011.12.125.
S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Anal. Chim. Acta 597(2) (2007) 179—186. https://doi.org/10.1016/j.aca.2007.07.011.
E.K. Tetteh, S. Rathilal, Bioengineering 9(3) (2022) 95. https://doi.org/10.3390/bioengineering9030095.
N.P. Sibiya, G. Amo-Duodu, E.K. Tetteh, S. Rathilal, Sci. Afr. 17 (2022) e01282. https://doi.org/10.1016/j.sciaf.2022.e01282.
W. Salah El-Din Mohamed, M.T.M.H. Hamad, M.Z. Kamel, Water Environ. Res. 92(7) (2020) 1080—1088. https://doi.org/10.1002/wer.1305.
A. Masmoudi-Soussi, I. Hammas-Nasri, K. Horchani-Naifer, M. Ferid, Int. J. Miner. Process. 123 (2013) 87—93. https://doi.org/10.1016/j.hydromet.2020.105253.
Z. Li, G.P. Demopoulos, J. Chem. Eng. Data 50(6) (2005) 1971—1982. https://doi.org/10.1021/je050217e.
Z. Li, G.P. Demopoulos, J. Chem. Eng. Data 51(2) (2006) 569—576. https://doi.org/10.1021/je0504055.
L. Fornsten, Biomaterials 19(6) (1998) 503—508. https://doi.org/10.1002/tqem.21929.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Cemre Avşar, Suna Ertunç
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Ulusal Metroloji Enstitüsü, Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
Grant numbers 118C085;2244