A RESINS-NEUTRALIZATION COUPLED ROUTE FOR THE TREATMENT OF STAINLESS-STEEL PICKLING EFFLUENT: A RESEARCH STUDY

Original scientific paper

Authors

  • Lalgudi Srinivas Bhadrinarayanan Department of Chemical Engineering, Sri Venkateswara College of Engineering (Autonomous), Post Bag No.1, Pennalur Village, Chennai – Bengaluru High Road, Sriperumbudur Tk. Kancheepuram District, Tamil Nadu 602117, India https://orcid.org/0000-0001-7899-1594
  • Chinthalacheruvu Anand Babu Department of Chemical Engineering, Sri Venkateswara College of Engineering (Autonomous), Post Bag No.1, Pennalur Village, Chennai – Bengaluru High Road, Sriperumbudur Tk. Kancheepuram District, Tamil Nadu 602117, India https://orcid.org/0000-0003-1789-0049

DOI:

https://doi.org/10.2298/CICEQ221023007B

Keywords:

Spent pickling solution, ion exchange, ultrafiltration, precipitation, industrial recycling, process flow sheet

Abstract

One of the major environmental problems caused by stainless-steel industries is the liquid effluents generated during the production processes. It contains a high concentration of metal ions such as Fe (III), Cr (III), Cr (VI), and Ni (II) in HF and HNO3 mixture, oil, and rinse wastewater. The used pickling waste stream has a pH of 0.5 and Total Dissolved Salts (TDS) of 520g/L with a density of 1.20g/CC. The present work focused on recycling pickling effluent by combining filtration, resins, and neutralization to remove metal ions efficiently and F- greater than 99.5%. To remove TDS, laboratory experiments were performed using micro and ultra-filters with a membrane area 0.2m2. Cr (VI) was removed using TulsionFSMP 6301 resin and desorption using NaNO3 and subsequent conversion into Na2Cr2O7 as a by-product. For neutralization, Ca(OH)2 and NaOH were used to precipitate metal ions, and the resulting filtrate was polished using ZrOCl2 to remove F- to 0.12 mg/L effectively. The nitrate was recovered as NaNO3. Adsorption isotherm and kinetic studies were utilized for Cr (VI) from experimental data, and a process flow diagram was developed, which can eventually be tested on a larger scale.

References

P. Lochynski, A. Sikora, B. Szczygiel, Surf. Eng. 33 (5) (2017) 395—403.http://doi.org/10.24425/aep.2021.139499.

F.C. Richard, Alain C. M. Bourg, Water Res. 25 (1991) 807—816. https://doi.org/10.1016/0043-1354(91)90160-R.

C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J.C. Torres-Guzmán, R. Moreno-Sánchez, FEMS Microbiol. Rev. 25 (2001) 335—347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x.

A. Banchhor, M. Pandey, P.K. Pandey, Res. J. Chem. Sci. 7 (7) (2017) 39—44. http://www.isca.in/rjcs/Archives/v7/i7/7.%20ISCA-RJCS-2017-024.pdf.

Central Pollution Control Board, Government of India, The Environment (Protection) Rules, 1986 [Schedule-VI], General standards for discharge of environmental pollutants Part-a: Effluents, https://www.cpcb.nic.in/GeneralStandards.pdf [accessed 14 April 2018].

R. David Szidon, J.S. Fritz, Separation of metal ions on chelating resin, https://dr.lib.iastate.edu/handle/20.500.12876/6951 [accessed 2 September 2018].

E. Marañón, F. Suárez, F. Alonso, Y. Fernández, H. Sastre, Ind. Eng. Chem. Res. 38 (1999) 2782—2786. http://doi.org/10.1021/ie9806895.

S.H. Lin, C.D. Kiang, Chem. Eng. J. 92 (2003) 193—199. https://doi.org/10.1016/S1385-8947(02)00140-7.

F.J. Alguacil, M. Alonso, L.J. Lozano, Chemosphere 57 (2004) 789—793. http://doi.org/10.1016/j.chemosphere.2004.08.085.

J. Laso, V. García, E. Bringas, A.M. Urtiaga, I. Ortiz, Ind. Eng. Chem. Res. 54 (2015) 3218—3224. https://doi.org/10.1021/acs.iecr.5b00099.

A. Krepler (Ruthner Industrieanlagen-Aktiengesellschaft, Vienna, Austria), US4144092A (1978).

C.J. Brown, M. Sheedy, Iron control and disposal: Proceedings of the second International Symposium on Iron Control in Hydrometallurgy, Canadian Institute of Mining, Metallurgy and Petroleum, Ottawa, Canada (1996), p.457-470. ISBN:9780919086715, 0919086713.

M. Sugisawa, T. Sasaki, Y. Nishimoto, (Shinco Pantec Company Limited, Kobe, Japan), US4943360A (1988).

C. Negro, M.A. Blanco, F. López-Mateos, A.M.C.P. DeJong, G. LaCalle, J. Van Erkel, D. Schmal, Sep. Sci. Technol. 36 (2001) 1543—1556. https://doi.org/10.1081/SS-100103887.

Z. Tang, X. Ding, X. Yan, Y. Dong, C. Liu, Metals 8 (2018) 1—11. https://doi.org/10.3390/met8110936.

T. Forsido, R. McCrindle, J. Maree, L. Mpenyana-Monyatsi, SN Appl. Sci. (2019) 1:1605. https://doi.org/10.1007/s42452-019-1649-z.

Y. Kobuchi, H. Motomura, Y. Noma, F. Hanada, J. Membr. Sci. 27 (1986) 173—179. https://doi.org/10.1016/S0376-7388(00)82054-2.

M. Sheedy, JOM 50 (1998) 66—69. https://doi.org/10.1007/s11837-998-0359-6

E. Marañón, Y. Fernández, F.J. Súarez, F.J. Alonso, H. Sastre, Ind. Eng. Chem. Res. 39 (2000) 3370—3376. https://doi.org/10.1021/ie0000414.

B. Schmidt, R. Wolters, J. Kaplin, T. Schneiker, M. de los A. Lobo-Recio, F. López, A. López-Delgado, F.J. Alguacil, Desalination 211 (2007) 64—71. https://doi.org/10.1016/j.desal.2006.03.591.

X. Bernata, A. Fortuny, F. Stüber, C. Bengoa, A. Fabregat, J. Font, Desalination 221 (2008) 413—418. https://doi.org/10.1016/j.desal.2007.01.100

N.Y. Ghare, K.S. Wani, V.S. Patil, Int. J. Emerg. Trends Eng. Dev. 1 (2014) 318—326. https://rspublication.com/ijeted/2014/jan14/33.pdf.

C. Anand Babu, B. Ayengar, K.B. Lal, R.V Amalraj, Waste Manage. 13 (1993) 279—283. https://doi.org/10.1016/0956-053X(93)90052-X.

Y. Gan, X. Wang, L. Zhang, B. Wu, G. Zhang, S. Zhang, Chemosphere 218 (2019) 860—868. https://doi.org/10.1016/j.chemosphere.2018.11.192.

X. Li, W. Li, S. Wang, Y. Cui, J. Zhao, Y. Zeng, F. Li, Adv. Mat. Res. 518–523 (2012) 2956—2960. http://doi.org/10.4028/www.scientific.net/AMR.518-523.2956.

N.S. Yousef, R. Farouq, R. Hazzaa, Desalin. Water Treat. 57 (2016) 21925—21938. https://doi.org/10.1080/19443994.2015.1132474.

C. Anand Babu, S. Swathi, L.S. Bhadrinarayanan, N. Meyyappan (Sri Venkateswara College of Engineering, Sriperumbudur, TamilNadu, India), 396960IN (2018). https://ipindiaservices.gov.in/PatentSearch/PatentSearch/ViewApplicationStatus.

K.K. Onchoke, S.A. Sasu, Adv. Environ. Chem. 2016 (2016) 1—10. https://doi.org/10.1155/2016/3468635.

M. Petrescu, E. Bucur, V. Danciulescu, A. Cozea, C.M. Borcescu, M. Bratu, G. Tanase, Rom. J. Ecol. Environ. Chem. 2 (2020) 185—192. https://doi.org/10.21698/rjeec.2020.223.

N. Gayathri, N. Balasubramanian, Indian J. Chem. 40 (2001) 656—658. http://nopr.niscpr.res.in/bitstream/123456789/21062/1/IJCA%2040A%286%29%20656-658.pdf.

V. Guimarães, H. Durão, M. Azenha, J. AOAC Int. 2014 (2014) 1—8. http://doi.org/10.5740/jaoacint.12-007.

A.G. Macejunas, J. AWWA 61(1969) 311—313. https://doi.org/10.1002/j.15518833.1969.tb03762.x.

P. Manikandan, K. Manjula Rani, S.V. Priya, V.N. Kowshalya, Nat., Environ. Pollut. Technol. 10 (1) (2011) 1—6. https://neptjournal.com/upload-images/NL-21-1-(1)-B-1641.pdf.

N.K. Hamadia, X.D. Chena, M.M. Farid, M.G.Q. Lub, Chem. Eng. J. 84(2) (2001) 95—105. https://doi.org/10.1016/S1385-8947(01)00194-2.

C. Marcu, C. Varodi, A. Balla, Anal. Lett. 54 (1—2) (2021) 140—149. https://doi.org/10.1080/00032719.2020.1731523.

L. Dahlgren, Treatment of spent pickling acid from Stainless Steel Production: A review of regeneration technologies with focus on neutralization process for implementation in Chinese industry, http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A473369&dswid=-3065 [accessed 14 January 2019].

Downloads

Published

06.05.2023 — Updated on 06.10.2023

Issue

Section

Articles

How to Cite

A RESINS-NEUTRALIZATION COUPLED ROUTE FOR THE TREATMENT OF STAINLESS-STEEL PICKLING EFFLUENT: A RESEARCH STUDY: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(1), 11-24. https://doi.org/10.2298/CICEQ221023007B

Funding data

Similar Articles

11-20 of 145

You may also start an advanced similarity search for this article.