CATALYTIC PERFORMANCE OF DESILICATED HZSM-12 FOR BENZYLATION REACTION OF BENZENE WITH BENZYL ALCOHOL

Original scientific paper

Authors

  • Sema Akyalcin Department of Chemical Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, Turkey https://orcid.org/0000-0001-8269-2968
  • Levent Akyalcin Department of Chemical Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, Turkey https://orcid.org/0000-0001-6779-1597
  • Morten Bjørgen Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway https://orcid.org/0000-0003-3920-3123

DOI:

https://doi.org/10.2298/CICEQ220620006A

Keywords:

benzyl alcohol, benzylation, catalyst deactivation, desilication, diphenylmethane, ZSM-12

Abstract

The catalytic production of diphenylmethane from the reaction of benzene with benzyl alcohol was investigated using HZSM-12 and desilicated  HZSM-12 that was obtained by treating ZSM-12 with 0.2M NaOH solution at 85 °C for 60 min. The untreated and alkaline treated ZSM-12 zeolites were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The desilicated HZSM-12 showed promising catalytic performance with benzyl alcohol conversion of 100% and the selectivity to diphenylmethane of 74% and 87% in 4 h and 8 h reaction time, respectively. The reaction parameters affecting benzyl alcohol conversion and product distribution were also presented. The activities of fresh and regenerated catalysts were compared, and characterization results indicated that the occluded organic molecules decreased the number of acidic sites of the catalyst after the reaction and regeneration.

References

K. Leng, Y. Wang, C. Hou, C. Lancelot, C. Lamonier, A. Rives, Y. Sun, J. Catal. 306 (2013) 100—108. http://doi.org/10.1016/j.jcat.2013.06.004.

N. Candu, M. Florea, S.M. Coman, V.I. Parvulescu, Appl. Catal., A 393 (2011) 206—214. https://doi.org/10.1016/j.apcata.2010.11.044.

D. Yin, C. Li, L. Tao, N. Yu, S. Hu, D. Yin, J. Mol. Catal. A: Chem. 245 (2006) 260—265. https://doi.org/10.1016/j.molcata.2005.10.010.

N. Candu, S. Wuttke, E. Kemnitz, S.M. Coman, V.I. Parvulescu, Pure Appl. Chem. 84 (2012) 427—437. http://doi.org/10.1351/PAC-CON-11-09-34.

K. Leng, S. Sun, B. Wang, L. Sun, W. Xu, Y. Sun, Catal. Commun. 28 (2012) 64—68. https://doi.org/10.1016/j.catcom.2012.08.016.

Y. Wang, Y. Sun, C. Lancelot, C. Lamonier, J.C. Morin, B. Revel, L. Delevoye, A. Rives, Microporous Mesoporous Mater. 206 (2015) 42—51. http://doi.org/10.1016/j.micromeso.2014.12.017.

V.D. Chaube, Catal. Commun. 5 (2004) 321—326. https://doi.org/10.1016/j.catcom.2004.02.013.

H. Jin, M.B. Ansari, E.Y. Jeong, S.E. Park, J. Catal. 291 (2012) 55—62. https://doi.org/10.1016/j.jcat.2012.04.006.

Y. Sun, R. Prins, Appl. Catal., A 336 (2008) 11—16. https://doi.org/10.1016/j.apcata.2007.08.015.

L. Tosheva, V.P. Valtchev, Chem. Mater. 17 (2005) 2494—2513. https://doi.org/10.1021/cm047908z.

J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, J. Mater. Chem. 16 (2006) 2121—2131. https://doi.org/10.1039/B517510K.

D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 1 (2011) 879—890. https://doi.org/10.1039/C1CY00150G.

L. Wang, Y. Wang, A. Wang, X. Li, F. Zhou, Y. Hu, Microporous Mesoporous Mater. 180 (2013) 242—249. http://doi.org/10.1016/j.micromeso.2013.06.029.

C. Perego, S. Amarilli, R. Millini, G. Bellussi, G. Girotti, G. Terzoni, Microporous Mater. 6 (1996) 395—404. https://doi.org/10.1016/0927-6513(96)00037-5.

R. Millini, F. Frigerio, G. Bellussi, G. Pazzucconi, C. Perego, P. Pollesel, U. Romano, J. Catal. 217 (2003) 298—309. https://doi.org/10.1016/S0021-9517(03)00071-X.

E.R. Rosinski, M.K. Rubin, US 3832449 (1974).

L.T. Nemeth, G.F. Maher, US 6872866B1 (2005).

B.H. Chiche, R. Dutartre, F. Di Renzo, F. Fajula, A. Katovic, A. Regina, G. Giordano, Catal. Lett. 31 (1995) 359—366. https://doi.org/10.1007/BF00808600.

S. Akyalcin, L. Akyalcin, M. Bjørgen, Microporous Mesoporous Mater. 273 (2019) 256—264. https://doi.org/10.1016/j.micromeso.2018.07.014.

S. Gopal, K. Yoo, P.G. Smirniotis, Microporous Mesoporous Mater. 49 (2001) 149—156. https://doi.org/10.1016/S1387-1811(01)00412-7.

Y. Hou, N. Wang, J. Zhang, W. Qian, RSC Adv. 7 (2017) 14309—14313. https://doi.org/10.1039/C6RA28844H.

D. Karabulut, S. Akyalcin, Int. J. Chem. React. Eng. 19 (2021) 541—551. https://doi.org/10.1515/ijcre-2020-0175.

X. Wei, P.G. Smirniotis, Microporous Mesoporous Mater. 97 (2006) 97—106. https://doi.org/10.1016/j.micromeso.2006.01.024.

A.L. Patterson, Phys. Rev. 56 (1939) 978. https://doi.org/10.1103/PhysRev.56.978.

K.T.G. Carvalho, E.A. Urquieta-Gonzalez, Catal. Today 243 (2015) 92—102. http://doi.org/10.1016/j.cattod.2014.09.025.

K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603—619. http://doi.org/10.1351/pac198557040603.

J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pérez-Ramírez, Colloids Surf., A 241 (2004) 53—58. https://doi.org/10.1016/j.colsurfa.2004.04.012.

J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 108 (2004) 13062—13065. https://doi.org/10.1021/jp047194f.

Q. Wang, Z.M. Cui, C.Y. Cao, W.G. Song, J. Phys. Chem. C 115 (2011) 24987—24992. https://doi.org/10.1021/jp209182u.

U.V. Mentzel, K.T. Højholt, M.S. Holm, R. Fehrmann, P. Beato, Appl. Catal., A 417–418 (2012) 290—297. https://doi.org/10.1016/j.apcata.2012.01.003.

M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K. P. Lillerud, S. Svelle, Appl. Catal., A 345 (2008) 43—50. https://doi.org/10.1016/j.apcata.2008.04.020.

K. Sadowska, A. Wach, Z. Olejniczak, P. Kustrowski, J. Datka, Microporous Mesoporous Mater. 167 (2013) 82—88. https://doi.org/10.1016/j.micromeso.2012.03.045.

S.J. You, E.D. Park, Microporous Mesoporous Mater. 186 (2014) 121—129. http://doi.org/10.1016/j.micromeso.2013.11.042.

S. Svelle, L. Sommer, K. Barbera, P.N.R. Vennestrøm, U. Olsbye, K.P. Lillerud, S. Bordiga, Y.H. Pan, P. Beato, Catal. Today 168 (2011) 38—47. https://doi.org/10.1016/j.cattod.2010.12.013.

X. Zeng, Z. Wang, J. Ding, L. Wang, Y. Jiang, C. Stampfl, M. Hunger, J. Huang, J. Catal. 380 (2019) 9—20. https://doi.org/10.1016/j.jcat.2019.09.035.

M. Milina, S. Mitchell, Z.D. Trinidad, D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 2 (2012) 759—766. https://doi.org/10.1039/C2CY00456A.

H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, Englewood Cliffs, NJ, USA (1999). ISBN 0-13-531708-8.

N. Narender, K.V.V. Krishna Mohan, S.J. Kulkarni, I. Ajit Kumar Reddy, Catal. Commun. 7 (2006) 583—588. https://doi.org/10.1016/j.catcom.2006.01.013.

K. Yoo, P.G. Smirniotis, Appl. Catal., A 246 (2003) 243—251. https://doi.org/10.1016/S0926-860X(03)00026-7.

J.C. Kim, K. Cho, R. Ryoo, Appl. Catal., A 470 (2014) 420—426. https://doi.org/10.1016/j.apcata.2013.11.019.

D.S.A. Silva, W.N. Castelblanco, D.H. Piva, V. Macedo, K.T.G. Carvalho, E.A. Urquieta-González, Mol. Catal. 492 (2020) 111026. https://doi.org/10.1016/j.mcat.2020.111026.

J. Shao, T. Fu, Z. Ma, C. Zhang, H. Li, L. Cui, Z. Li, Catal. Sci. Technol. 9 (2019) 6647—6658. https://doi.org/10.1039/C9CY01053J.

G. Cruciani, J. Phys. Chem. Solids 67 (2006) 1973—1994. https://doi.org/10.1016/j.jpcs.2006.05.057.

Published

20.03.2023 — Updated on 06.10.2023

Issue

Section

Articles

How to Cite

CATALYTIC PERFORMANCE OF DESILICATED HZSM-12 FOR BENZYLATION REACTION OF BENZENE WITH BENZYL ALCOHOL: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 30(1), 1-10. https://doi.org/10.2298/CICEQ220620006A