BIOGAS PRODUCTION AND GREENHOUSE GAS MITIGATION USING FISH WASTE FROM BRAGANÇA/BRAZIL

Original scientific paper

Authors

  • Dayse Maria Sá Silva Departamento de Engenharia Química, Universidade Federal de Pernambuco, Post-graduation Program in Chemical Engineering - Rua Professor Artur de Sá, s/N, CEP - 50740-521, Recife-PE, Brazil https://orcid.org/0000-0001-6372-2033
  • Jorge Vinícius Fernandes Lima Cavalcanti Departamento de Engenharia Química, Universidade Federal de Pernambuco, Post-graduation Program in Chemical Engineering - Rua Professor Artur de Sá, s/N, CEP - 50740-521, Recife-PE, Brazil https://orcid.org/0000-0001-8006-1556
  • Adalberto do Nascimento Freire Júnior Escola Politécnica de Pernambuco, Universidade de Pernambuco, PPGES – Master´s program in Systems Engineering – Rua do Benfica, 455, CEP 50750-410, Recife-PE, Brazil
  • Sérgio Peres Escola Politécnica de Pernambuco, Universidade de Pernambuco, PPGES – Master´s program in Systems Engineering – Rua do Benfica, 455, CEP 50750-410, Recife-PE, Brazil https://orcid.org/0000-0002-2235-3507
  • Marileide Moraes Alves Bragança Campus, Universidade Federal do Pará, Avenida Leandro Ribeiro, S/N, CEP 68600-000, Bragança- PA, Brazil https://orcid.org/0000-0002-1736-5968
  • Mohand Benachour Departamento de Engenharia Química, Universidade Federal de Pernambuco, Post-graduation Program in Chemical Engineering - Rua Professor Artur de Sá, s/N, CEP - 50740-521, Recife-PE, Brazil https://orcid.org/0000-0003-0139-9888

DOI:

https://doi.org/10.2298/CICEQ220614004S

Keywords:

Biogas, energy, fish waste, greenhouse gases, kinetic models, methane

Abstract

The potential of biogas production using fish waste (FW) and its effect on greenhouse gas (GHG) reduction and energy production were evaluated in this research. FW was co-digested with anaerobic sewage sludge (SS). The FW was collected in Bragança, northern Brazil, where the fish industry is the main activity with an FW production of approximately 9,000 kg·day-1. The experimental part included five SS/FW ratios, and in two experiments, hydrogen was added. The experiments were carried out for 30 days, and the effect on the cumulative biogas and methane yields were analyzed. The GHG reduction was estimated using the amount of FW not discarded in the Bragança open dump, and the electricity generation was calculated using the methane yield. Besides, two kinetic models were performed. The results presented a GHG reduction of 1,619 tons of CO2e and an electricity production of 372 MWh·year-1 to 956 MWh·year-1. Furthermore, the analysis of variance indicated that the methane production was highly dependent on the SS/FW ratios, which ranged from 76 mL·gvs-1 to 138 mL·gvs-1. Finally, this research showed the benefit of using FW to generate biogas and electricity while reducing GHG emissions in a city without energy.

References

A.R. Picos-Benítez, J.M. Peralta-Hernández, J.D. López-Hincapié, A. Rodríguez-García, J. Water Process. Eng. 32 (2019) 100933. https://doi.org/10.1016/j.jwpe.2019.100933.

K. Ivanovs, K. Spalvins, D. Blumberga, Energy Procedia

(2018) 390—396. https://doi.org/10.1016/j.egypro.2018.07.108.

A.K. Rai, H.C. Swapna, N. Bhaskar, P.M. Halami, N.M. Sachindra, Enzyme Microb. Technol. 46 (2010) 9—13. https://doi.org/10.1016/j.enzmictec.2009.09.007.

E.U. Kiran, Y. Liu, Fuel 159 (2015) 463—469. https://doi.org/10.1016/j.fuel.2015.06.101.

Y. Ren, M. Yu, C, Wu, Q. Wang, M. Gao, Q. Huang, Y. Liu, Bioresour. Technol. 247 (2018) 1069—1076. https://doi.org/10.1016/j.biortech.2017.09.109.

G.K. Kafle, S.H. Kim, K.I. Sung, Bioresour. Technol. 127 (2013) 326—336. https://doi.org/10.1016/j.biortech.2012.09.032.

J. Moestedt, J. Malmborg, E. Nordell, Energies 8 (2015) 645—655. https://doi.org/10.3390/en8010645.

M. Szuhaj, N. Ács, R. Tengölics, A. Bodor, G. Rákhely, K.L. Kovács, Z. Bagi, Biotechnol. Biofuels 9 (2016) 1—14. https://doi.org/10.1186/s13068-016-0515-0.

W.B. Aoun, B. Gabrielle, B. Gagnepain, OCL: Oilseeds Fats, Crops Lipids 20 (2013) 1—12. https://doi.org/10.1051/ocl/2013027.

L.A. Santos, R.B. Valença, L.C.S. Silva, S.H.B. Holanda, A.F.V. Silva, J.F.T. Jucá, A.F.M.S. Santos, J. Clean. Prod. 256 (2020) 120389. https://doi.org/10.1016/j.jclepro.2020.120389.

I.U. Khan, M.H.D. Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, I.W. Azelee, Energy Convers. Manag. 150 (2017) 277—294. https://doi.org/10.1016/j.enconman.2017.08.035.

B. Bharathiraja, T. Sudharsana, J. Jayamuthunagai, R. Praveenkumar, S. Chozhavendhan, J. Iyyappan, Renew. Sust. Energ. Rev. 90 (2018) 570—582. https://doi.org/10.1016/j.rser.2018.03.093.

K.A. Lyng, A.E. Stensgård, O.J. Hanssen, I.S. Modahl, J. Clean. Prod. 182 (2018) 737—745. https://doi.org/10.1016/j.jclepro.2018.02.126.

J.L. Freire, B.B. Silva, A.S. Souza, Economic and hygienic-sanitary aspects of fish marketing in the city of Bragança (PA) (In Portuguese), https://pdfs.semanticscholar.org/0ddb/5cb49498dba19d786534920b0b8e5a7613e0.pdf (accessed 03 January 2023).

L.S. Cadavid-Rodríguez, M.A. Vargas-Muñoz, J. Plácido, Sustain. Energy Technol. Assess. 34 (2019) 110—115. https://doi.org/10.1016/j.seta.2019.05.006.

U. Choe, A. M. Mustafa, H. Lin, J. Xu, K. Sheng, Bioresour. Technol. 283 (2019) 340—349. https://doi.org/10.1016/j.biortech.2019.03.084.

V. Moset, N. Al-zohairi, H.B. Møller, Biomass Bioenergy 83 (2015) 474—482. http://dx.doi.org/10.1016/j.biombioe.2015.10.018.

S.Y. Xu, O.P. Karthikeyan, A. Selvam, J.W.C. Wong, Bioresour. Technol. 126 (2012) 425—430. http://doi.org/10.1016/j.biortech.2011.12.059.

J. Xu, A.M. Mustafa, K. Sheng, Environ. Technol. 38 (2016) 2517—2522. http://dx.doi.org/10.1080/09593330.2016.1269837.

B. Barros Neto, I.S. Scarminio R.E. Bruns, in How to do experiments: research and development in science and industry (in Portuguese), UNICAMP, 2nd Ed., Campinas/Brazil (2002), p.201—296. ISBN 85-268-0544-4.

G.K. Kafle, S.H. Kim, J. Biosyst. Eng. 37 (2012) 302—313. http://dx.doi.org/10.5307/JBE.2012.37.5.302.

S. Finnegan, S. Sharples, T. Johnston, M. Fulton, Energy 153 (2018) 256—264. https://doi.org/10.1016/j.energy.2018.04.033.

Getulio Vargas Foundation, Brazilian GHG Protocol Program, https://eaesp.fgv.br/en/study-centers/center-sustainability-studies/projects/brazilian-ghg-protocol-program (accessed 16 June 2021).

A.S. Souza, S. Peres, J. Eng. Appl. Res. 4 (2019) 1—9. https://doi.org/10.25286/repa.v4i2.1221.

S. Achinas, V. Achinas, G.J.W. Euverink, Engineering 3 (2017) 299—307. https://doi.org/10.1016/J.ENG.2017.03.002.

F. Bücker, M. Marder, M.R. Peiter, D.N. Lehn, V.M. Esquerdo, L.A.A. Pinto, O. Konrad, Renewable Energy 147 (2020) 798—805. https://doi.org/10.1016/j.renene.2019.08.140.

E. Kovács, R. Wirth, G. Maróti, Z. Bagi, K. Nagy, J. Minárovits, G. Rákhely, K.L. Kóvacs, Bioresour. Technol. 178 (2015) 254—261. https://doi.org/10.1016/j.biortech.2014.08.111.

M. Von Sperling, Introduction to water quality and to wastewater treatment (in Portuguese), UFMG, 1st Ed., Belo Horizonte/Brazil (2005), p. 10—100, ISBN 8570411146.

A. Carvalho, R. Fragoso, J. Gominho, E. Duarte, Waste Biomass Valorization 10 (2019) 75—83. https://doi.org/10.1007/s12649-017-0048-1-

S. Peres, M.R. Monteiro, M.L. Ferreira, A.F. Nascimento Junior, M.L.A.P.F. Palha, Bioenergy Res. 12 (2019) 150—157. https://doi.org/10.1007/s12155-018-9942-z.

C. Roati, S. Fiore, B. Ruffino, F. Marchese, D. Novarino, M.C. Zanetti, Am. J. Environ. Sci. 8 (2012) 291—296. https://doi.org/10.3844/ajessp.2012.291.296.

L. Solli, A. Schnürer, S.J. Horn, Renewable Energy 125 (2018) 529—536. https://doi.org/10.1016/j.renene.2018.02.123.

J.L. Chen, R. Ortiz, T.W.J. Steele, D.C. Stuckey, Biotechnol. Adv. 32 (2014) 1523—1534. https://doi.org/10.1016/j.biotechadv.2014.10.005.

O. Velasquez, Characterization and analysis of the electrical energy demand in the ZNI of the department of Nariño (in Spanish), http://sired.udenar.edu.co/886/ (accessed 18 April 2022).

J.A.V. Piñas, O.J. Venturini, E.E.S. Lora, O.D.C. Roalcaba, Renewable Energy 117 (2018) 447—458. https://doi.org/10.1016/j.renene.2017.10.085.

International Organization for Standardization, Meat and meat products - Determination of moisture content, https://www.iso.org/standard/6037.html (accessed 16 August 2021).

International Organization for Standardization, Meat and meat products - Measurement of pH, https://www.iso.org/standard/24785.html (accessed 16 August 2021).

International Organization for Standardization, Meat and meat products - Determination of total phosphorus content,

https://www.iso.org/obp/ui/#iso:std:iso:13730:ed-1:v1:en (accessed 16 August 2021).

International Organization for Standardization, Meat and meat products - Determination of free fat content, https://www.iso.org/obp/ui/fr/#iso:std:iso:1444:ed-2:v1:en (accessed 16 August 2021).

International Organization for Standardization, Food and feed products - General guidelines for the determination of nitrogen by the Kjeldahl method, https://cdn.standards.iteh.ai/samples/41320/e632a064184c4ed992c920bd7b22819d/ISO-1871-2009.pdf (accessed 16 August 2021).

International Organization for Standardization, Fertilizers - Determination of potassium content - Titrimetric method, https://www.iso.org/standard/11317.html (accessed 16 August 2021).

Food and Agriculture Organization of the United Nations, Standard for salted fish and dried salted fish of the Gadidae family of fishes, http://www.fao.org/input/download/standards/113/CXS_167e.pdf (accessed 17 August 2021).

American Public Health Association, 2540 Solids, https://www.standardmethods.org/doi/10.2105/SMWW.2882.030 (accessed 16 August 2021).

American Public Health Association, 2510 Conductivity, https://www.standardmethods.org/doi/10.2105/SMWW.2882.027 (accessed 16 August 2021).

American Public Health Association, 5210 Biochemical Oxygen Demand (BOD), https://www.standardmethods.org/doi/10.2105/SMWW.2882.102 (accessed 16 August 2021).

American Public Health Association, 5220 Chemical Oxygen Demand (COD), https://www.standardmethods.org/doi/10.2105/SMWW.2882.103 (accessed 16 August 2021).

São Paulo Government, Analysis of anaerobic and aerobic colony forming units, https://www.defesa.agricultura.sp.gov.br/legislacoes/instrucao-normativa-sda-62-de-26-08-2003,665.html (accessed 17 August 2021).

American Society for Testing and Materials, Standards method for the ultimate analysis of coal and coke [C, H, S, N, O] (1988) section D3176-84, p. 409—412.

A. Kasinath, S. Fudala-Ksiazek, M. Szopinska, H. Bylinski, W. Artichowicz, A. Remiszewska-skwarek, A. Luczkiewicz, Renewable and Sustainable Energy Rev. 150 (2021) 111509. https://doi.org/10.1016/j.rser.2021.111509.

K. Pilarski, A. A. Pilarska, P. Boniecki, G. Niedbala, K. Durczak, K. Witaszek, N. Mioduszewska, I. Kowalik, Energies 13 (2020) 1280. https://doi.org/10.3390/en13051280.

B. Deepanraj, N. Senthilkumar, J. Ranjitha, Energ. Source Part A 43 (2021) 1329—1336. https://doi.org/10.1080/15567036.2019.1636902.

X. Wang, R. Su, K. Chen, S. Xu, J. Feng, P. Ouyang, Front. Microbiol. 10 (2019) 1—10. https://doi.org/10.3389/fmicb.2019.00341.

M. Ravanipour, A. Hamidi, A. H. Mahvi, Renewable Sustainable Energy Rev. 150 (2021) 111426. https://doi.org/10.1016/j.rser.2021.111426.

S. S. Hosseini, K. Yaghmaeian, N. Yousefi, A. H. Mahvi, Global J. Environ. Sci. 4 (2018) 493—506. https://doi.org/10.22034/gjesm.2018.04.009.

L. Santoli, R. Paiolo, G. Lo Basso, Energy Procedia 126 (2017) 297—304. https://doi.org/10.1016/j.egypro.2017.08.224.

J. M. Smith, H. C. Van Ness, M. M. Abbott, in Introduction to Chemical Engineering Thermodynamics (in Portuguese), LTC, 7nd Ed., Rio de Janeiro (2007), p. 514. ISBN 0-07-310445-0.

S. Riya, R. Imano, J. Li, H. Sun, S. Zhou, M. Hosomi, Pedosphere 32 (2022) 928—932. https://doi.org/10.1016/j.pedsph.2022.06.040.

N. Pour, P. A. Webley, P. J. Cook, Energy Procedia 114 (2017) 6044—6056. https://doi.org/10.1016/j.egypro.2017.03.1741.

M. Ravanipour, R. Bagherzadeh, A. H. Mahvi, J. Mater. Cycles Waste Manag. 23 (2021) 1394—1403. https://doi.org/10.1007/s10163-021-01219-2.

W. L. Chow, S. Chong, J. W. Lim, Y. J. Chan, M. F. Chong, T. J. Tiong, J. K. Chin, G-T. Pan, Processes 8 (2020) 1—21. https://doi.org/10.3390/pr8010039.

I. Bassani, P. G. Kougias, L. Treu, I. Angelidaki, Environ. Sci. Technol. 49 (2015) 12585—12593. https://doi.org/10.1021/acs.est.5b03451.

J. C. Lee, J. H. Kim, W. S. Chang, D. Pak, J. Chem. Technol. Biotechnol. 87 (2012) 844—877. https://doi.org/10.1002/jctb.3787.

A. Pal, S. Bhattacharjee, Energy 203 (2020) 117819. https://doi.org/10.1016/j.energy.2020.117819.

K. Obileke, G. Makaka, N. Nwokolo, E. L. Meyer, P. Mukumba, Chemengineering 6 (2022) 1—12. https://doi.org/10.3390/chemengineering6050067.

V. S. Santos, P. F. Martins, L. Borgo, P. S. A. Faria, C. F. Silva, A. Jakelaitis, Cienc. Rural 51 (2021) 1—9. https://doi.org/10.1590/0103-8478cr20200263.

C. Feng, D. Cheng, Y. Feng, W. Qi, Z. Jia, L. Weaver, Y. Liu, Z. Li, J. Integr. Agric. 19 (2020) 1127—1136. https://doi.org/10.1016/S2095-3119(19)62764-4.

S. Golbaz, A. H. Mahvi, M. M. Emamjomeh, A. N. Baghani, Int. J. Environ. Waste Manag. 28 (2021) 298—316. https://doi.org/10.1504/IJEWM.2021.118367.

Downloads

Published

15.03.2023 — Updated on 04.06.2023

Issue

Section

Articles

How to Cite

BIOGAS PRODUCTION AND GREENHOUSE GAS MITIGATION USING FISH WASTE FROM BRAGANÇA/BRAZIL: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(4), 319-331. https://doi.org/10.2298/CICEQ220614004S

Similar Articles

61-70 of 80

You may also start an advanced similarity search for this article.