OPTIMIZATION AND EFFECT OF DIELECTRIC FLUID WITH Zr AND Ni ON ELECTRICAL DISCHARGE MACHINING OF DIE STEEL MATERIAL

Original scientific paper

Authors

  • Srinivasan Appadurai Department of Mechanical Engineering, AVS Engineering College, Salem-636003, Tamil Nadu, India https://orcid.org/0000-0003-1216-4945
  • Saravanan Kanthasamy Ganesan Department of Mechanical Engineering, Sona College of Technology, Salem - 636005, Tamil Nadu, India https://orcid.org/0000-0002-7962-8444
  • Viswanathan Rangasamy Department of Mechanical Engineering, AVS Engineering College, Salem-636003, Tamil Nadu, India https://orcid.org/0000-0001-5007-3302
  • Karthikeyan Saravanan Kanakasabapathi Department of Mechanical Engineering, Kongunadu College of Engineering and Technology, Trichy-621215, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ221215005A

Keywords:

optimization, electrical discharge machining, dielectric fluid, nickel, zirconium, metal removal rate, surface roughness

Abstract

This work aims to optimize the machining parameters and study the effect of powder-mixed dielectric fluid on the electrical discharge machining (EDM) process. The TOPSIS method of optimization is adopted to identify the optimal machining parameters. HCHCr die steel is preferred as a machining material. Due to their hard and ductile nature, Ni, Zr, and Ni+Zr were selected as powder inclusion in dielectric fluid. An L9 array Taguchi DOE is preferred to perform the experiments with parameters like peak off time, pulse off time, and pulse current. TOPSIS study revealed that the third level of powder dielectric fluid (Ni+Zr), 7A peak current, 9 µs pulse on time, and 2 µs pulse off time were specified as the optimal condition. Pulse on time (Ton) significantly impacted metal removal rate and surface roughness while machining operation on HCHCr die steel. SEM analysis was done to find the effect of powder-mixed dielectric fluid, while EDAX analysis was done to ensure the presence of powder inclusion.

References

W.S. Zhao, Q.G. Meng, Z.L. Wang, J. Mat. Process. Technol. 129 (2002) 30—33. https://doi.org/10.1016/S0924-0136(02)00570-8.

P. Pecas, E. Henriques, Int. J. Mach. Tools Manuf. 43 (2003) 1465—1471. https://doi.org/10.1016/S0890-6955(03)00169-X.

K.H. Ho, S.T. Newman, Int. J. Mach. Tools Manuf. 43 (2003) 1287—1300. https://doi.org/10.1016/S0890-6955(03)00162-7.

A.Y. Joshi, A.Y. Joshi, Heliyon 5 (2019) e02963. https://doi.org/10.1016/j.heliyon.2019.e02963.

H.K. Kansal, S. Singh, P. Kumar, J. Mat. Process. Technol. 184 (2007) 32—41.

https://doi.org/10.1016/j.jmatprotec.2006.10.046.

N. Beri, S. Maheshwari, C. Sharma, A. Kumar, Int. J. Mech. Mechatron. Eng. 2 (2008) 225—229. https://doi.org/10.5281/zenodo.1327508.

S. Sharma, A. Kumar, N. Beri, D. Kumar, Int. J. Adv. Eng. Technol. 1 (2010) 13—24. https://www.technicaljournalsonline.com/ijeat/VOL%20I/IJAET%20VOL%20I%20ISSUE%20III%20OCTBER%20DECEMBER%202010/IJAET%20OCT-DEC,2010%20ARTICLE%202.pdf.

J.H. Jung, W.T. Kwon, J. Mech. Sci. Technol. 24 (2010) 1083—1090. https://doi.org/10.1007/s12206-010-0305-8.

K. Ojha, R.K. Garg, K.K. Singh, J. Min. Mat. Charact. Eng. 10 (2011) 1087—1102. https://doi.org/10.4236/jmmce.2011.1011083.

S. Kumar, U. Batra, J. Manuf. Process. 14 (2012) 35—40. https://doi.org/10.1016/j.jmapro.2011.09.002.

S. Singh, M.F. Yeh, (2012). J. Mater. Eng. Perform. 21 (2012) 481—491. https://doi.org/10.1007/s11665-011-9861-z.

M. Kolli, A. Kumar, Eng. Sci. Technol. Int. J. 18 (2015) 524—535. https://doi.org/10.1016/j.jestch.2015.03.009.

M. Kolli, A. Kumar, Int. J. Ind. Eng. Manage. Sci. 4 (2014) 62—67. https://doi.org/10.9756/BIJIEMS.4820.

S. Tripathy, D.K. Tripathy, Eng. Sci. Technol, Int. J. 19 (2016) 62—70. https://doi.org/10.1016/j.jestch.2015.07.010.

M. Patel, G. Chandrashekarappa, S. Kumar, D.Y. Jagadish, Pimenov, K. Giasin, Metals 11 (2021) 419. https://doi.org/10.3390/met11030419.

S. Thamos, S. Ramesh, J. Jeykrishnan, Int. J. of Latest Trends in Eng. Technol. 7 (2016) 61—66. http://dx.doi.org/10.21172/1.73.009.

N. Sivashankar, R. Viswanathan, K. Periasamy, R. Venkatesh, S. Chandrakumar, Mater. Today: Proc. 37 (2021) 214—219. https://doi.org/10.1016/j.matpr.2020.05.033.

A. Kannan, R. Mohan, R. Viswanathan, N. Sivashankar, J. Mat. Res. Technol. 9 (2020) 16529—16540. https://doi.org/10.1016/j.jmrt.2020.11.074.

R. Viswanathan, S. Ramesh, S. Maniraj, V. Subburam, Measurement 159 (2020) 107800. https://doi.org/10.1016/j.measurement.2020.107800.

R. Karthik, R. Viswanathan, J. Balaji, N. Sivashankar, R. Arivazhagan, IOP Conf. Ser.: Mater. Sci. Eng. 1013 (2021) 012005. https://doi.org/10.1088/1757-899X/1013/1/012005.

C. Wang, Z. Qiang, Adv. Mat. Sci. Eng. (2019) 5625360. https://doi.org/10.1155/2019/5625360.

P. Sadagopan, B. Mouliprasanth, Int. J. Adv. Manuf. Technol. 92 (2017) 277—291. https://doi.org/10.1007/s00170-017-0039-1.

P. Suresh, R. Venkatesan, T. Sekar, N. Elango, V. Sathiyamoorthy, J. Mech. Eng. 60 (2014), 656—664. https://doi.org/10.5545/sv-jme.2014.1665.

R. Shinde, N. Patil, D. Raut, R. Pawade, P. Brahmankar, Proc. Int. Conf. Commun. Signal Process. (ICCASP 2016), Atlantis Press (2016), India. https://doi.org/10.2991/iccasp-16.2017.47.

L. Praveen, P. Geeta Krishna, L. Venugopal, N.E.C. Prasad, IOP Conf. Series: Mat. Sci. Eng. 330 (2018) 012083. https://doi.org/10.1088/1757-899X/330/1/012083.

F. Klocke, S. Schneider, L. Ehle, H. Meyer, L. Hensgen, A. Klink, Procedia CIRP, 42 (2016) 580—585. https://doi.org/10.1016/j.procir.2016.02.263.

S. Kang, D. Kim, J. Mech. Sci. Technol. 17 (2003) 1475—1484. https://doi.org/10.1007/BF02982327.

S.H. Aghdeab, A.I. Ahmed, Eng. Technol. J. 34 (2016) 2940—2949. http://dx.doi.org/10.30684/etj.34.15A.14.

N. Pragadish, E. Natarajan, M. Selvam, A. Singh, N. Saravanakumar, Lecture Notes in Mechanical Engineering. Springer, Singapore (2023) 535—546. https://doi.org/10.1007/978-981-19-3053-9_40.

V. Manoharan, S. Tamilperuvalathan, E. Natarajan, P. Ponnusamy, Lecture Notes in Mechanical Engineering, Springer, Singapore (2022) 27—34. https://doi.org/10.1007/978-981-16-4222-7_4.

P. Nagarajan, P.K. Murugesan, E. Natarajan, Medziagotyra 25 (2019) 270—275. https://doi.org/10.5755/j01.ms.25.4.20899.

R. Viswanathan, K.G. Saravanan, J. Balaji, R. Prabu, K. Balasubramani, Mater. Today: Proc. 47 (2021) 4449—4453. https://doi.org/10.1016/j.matpr.2021.05.308.

A. Kanakaraj, R. Mohan, R. Viswanathan, J. Ceram. Process. Res. 23 (2022) 268—277. https://doi.org/10.36410/jcpr.2022.23.3.268.

M. Srinivasan, S. Ramesh, S. Sundaram, R. Viswanathan, J. Ceram. Process. Res. 22 (2021) 345—355. https://doi.org/10.36410/jcpr.2021.22.3.345.

K. Periasamy, N. Sivashankar, R. Viswanathan, J. Balaji, J. Ceram. Process. Res. 23 (2022) 335—343. https://doi.org/10.36410/jcpr.2022.23.3.335.

S. Ramesh, N. Vijayakumar, R. Viswanathan, S. Saravanan, Lecture Notes in Mechanical Engineering, Springer, Singapore (2021) 167—185. https://doi.org/10.1007/978-981-16-2086-7_14.

V. N. Sulakhe, R. Dalu, N. Seth, P. Sharma, N. Sanghai, AIP Conf. Proc. 020021 (2018) 1—9. https://doi.org/10.1063/1.5058258.

E. Natarajan , V. Kaviarasan , W. H. Lim, S. Ramesh, K. Palanikumar , T. Sekar, V. H. Mok, Adv. Mat. Sci. Eng. 3072663 (2022), 1—14. https://doi.org/10.1155/2022/3072663.

P. Nagarajan, P. K. Murugesan, E. Natarajan, Mat. Sci. 25 (2019) 270—275. http://dx.doi.org/10.5755/j01.ms.25.3.20899.

Downloads

Published

15.03.2023 — Updated on 04.06.2023

Issue

Section

Articles

How to Cite

OPTIMIZATION AND EFFECT OF DIELECTRIC FLUID WITH Zr AND Ni ON ELECTRICAL DISCHARGE MACHINING OF DIE STEEL MATERIAL: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(4), 311-318. https://doi.org/10.2298/CICEQ221215005A

Similar Articles

51-60 of 106

You may also start an advanced similarity search for this article.