INVESTIGATION OF THE THIN LAYER DRYING OF MICROPROPAGATED OCIMUM BASILICUM L: MODELING BY DERIVED EQUATIONS, QUALITY CHARACTERISTICS, AND ENERGY EFFICIENCY

Original scientific paper

Authors

  • Mehmet Kalender Department of Bioengineering, Fırat University, 23100, Elazığ, Turkey
  • Aykut Topdemir Department of Bioengineering, Fırat University, 23100, Elazığ, Turkey

DOI:

https://doi.org/10.2298/CICEQ220722003K

Keywords:

micropropagation, O. basilicum L., thin-layer drying, modeling, energy consumption, characteristic

Abstract

This study presents the modeling of thin layer drying of micropropagated Ocimum basilicum L., some quality characteristics of the dried product, and energy consumption analysis for the dryer used. The experimental drying data obtained from a previous article were used in the statistical analyses. Modeling studies were statistically carried out using the experimental data at a 1 m/s airflow rate and a temperature of 30 °C—50 °C. The statistical analysis showed that the Verma equation was the best-fit model with the lowest chi-square (χ2) and AIC values at all temperatures studied. From statistical analyses using derived drying models, it was found that the D9 equation having a χ2 value of 0.0146 and an AIC value of -528.0, was the best model fitting to experimental data. The total phenolic content, flavonoid, and antioxidant capacity of dried basil samples were measured as          (2.538 ± 0.029) mg GAE/g, (2.017 ± 0.088) mg quercetin/g, and                 (2.263 ± 0.001) mmol TEAC/100 g d.w., respectively. From FTIR spectra, dried basil samples had typical functional groups. SEM images showed that a collapse in the surface of the leaves occurred. But, this collapse is not affecting the functional groups on the surface of the leaves. From energy consumption analyses, the optimum drying temperature was found to be 40 °C. The SMER, MER, and SEC values calculated from energy consumption analysis at 40 °C were 0.0043 kg/kWh, 0.0007 kg/h, and 234.81 kWh/kg, respectively.

References

J.E. Simon, M.R. Morales, W.B. Phippen, R.F. Vieira, Z. Hao, Basil: A source of aroma compounds and a popular culinary and ornamental herb, Janick J (Ed) ASHS press,Alexandria , VA, (1999), p 499.

K. Carović-Stanko, Z. Liber, V. Besendorfer, B. Javornik, B. Bohanec, I. Kolak, Z. Satovic, Plant Sys Evol Suppl 285 (2010) 13—22. https://doi.org/10.1007/s00606-009-0251-z.

S. Filip, Int. J. Clin. Nutr. Diet 3 (2017) 118. https://doi.org/10.15344/2456-8171/2017/118.

O. Makri, S. Kintzios, J. Herbs, Spices Med. Plants 13 (2008) 123—150. https://doi.org/10.1300/J044v13n03_10.

K. Dhama, K. Sharun, M.B. Gugjoo, R. Tiwari, M. Alagawany, M. Iqbal Yatoo, P. Thakur, H.M. Iqbal, W. Chaicumpa, I. Michalak, Food Rev. Int. (2021) 1—29. https://doi.org/10.1080/87559129.2021.1900230.

C. Jayasinghe, N. Gotoh, T. Aoki, S. Wada, J. Agric. Food Chem. 51 (2003) 4442—4449. https://doi.org/10.1021/jf034269o.

L.C. Chiang, L.T. Ng, P.W. Cheng, W. Chiang, C.C. Lin, Clin. Exp. Pharmacol. Physiol. 32 (2005) 811—816. https://doi.org/10.1111/j.1440-1681.2005.04270.x.

A.B. Mohammed, S. Yagi, T. Tzanova, H. Schohn, H. Abdelgadir, A. Stefanucci, A. Mollica, M.F. Mahomoodally, T.A. Adlan, G. Zengin, S. Afr. J. Bot. 132 (2020) 403—409. https://doi.org/10.1016/j.sajb.2020.06.006.

A. Aye, Y.-D. Jeon, J.-H. Lee, K.-S. Bang, J.-S. Jin, Oriental Pharmacy and Experimental Medicine 19 (2019) 217—226. https://doi.org/10.1007/s13596-019-00372-2.

N.A. Arikat, F.M. Jawad, N.S. Karam, R.A. Shibli, Sci. Hortic. (Amsterdam, Neth.) 100 (2004) 193—202. https://doi.org/10.1016/j.scienta.2003.07.006.

R.L.M. Pierik, In vitro culture of higher plants, Kluwer Academic Publisher,Boston, (1997), p.301. 0792345274.

M. Debnath, C. Malik, P.S. Bisen, Curr. Pharm. Biotechnol. 7 (2006) 33—49. DOI: 10.2174/138920106775789638.

K. Altay, A.A. Hayaloglu, S.N. Dirim, Heat Mass Transfer. 55 (2019) 2173—2184. https://doi.org/10.1007/s00231-019-02570-9.

S. Fang, Z. Wang, X. Hu, Int. J. Food Sci. Technol. 44 (2009) 1818—1824. https://doi.org/10.1111/j.1365-2621.2009.02005.x.

B. Tepe, T.K. Tepe, A. Ekinci, Chem. Ind. Chem. Eng. Q. 22 (2022) 151—159. https://doi.org/10.2298/CICEQ210126026T.

A.C. Ersan, N. Tugrul, Chem. Ind. Chem. Eng. Q. 27 (2021) 319—328. https://doi.org/10.2298/CICEQ201114050E.

M. Özcan, D. Arslan, A. Ünver, J. Food Eng. 69 (2005) 375—379. https://doi.org/10.1016/j.jfoodeng.2004.08.030.

A. Telfser, F.G. Galindo, LWT 99 (2019) 148—155. https://doi.org/10.1016/j.lwt.2018.09.062.

A. Topdemir, J. Fırat Univ. Eng. Sci. 31 (2019) 545—550. https://doi.org/10.35234/fumbd.580212.

T. Murashige, F. Skoog, Physiol. Plant. 15 (1962) 473—497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

C.J. Geankoplis, A.A. Hersel, D.H. Lepek, Transport processes and separation process principles, Prentice Hall Boston, (2018). ISBN 0-13-045253-X.

J.M. Coulson, J.F. Richardson, J.R. Backhurst, J.H. Harker, Chemical Engineering: Fluid flow, heat transfer and mass transfer, Pergamon press,London, (1954). ISBN: 9788181473868.

Z. Erbay, F. Icier, Crit. Rev. Food Sci. Nutr. 50 (2010) 441—

https://doi.org/10.1080/10408390802437063.

C. Ertekin, M.Z. Firat, Crit. Rev. Food Sci. Nutr. 57 (2017) 701—717. https://doi.org/10.1080/10408398.2014.910493.

Q. Liu, F. Bakker-Arkema, J. Agric. Eng. Res. 66 (1997) 275—280. https://doi.org/10.1006/jaer.1996.0145.

G.E. Page, Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers., Master Thesis, Purdue University(1949). 1083231995.

S. Henderson, S. Pabis, J. Agric. Eng. Res. 7 (1962) 85—89.

A. Yağcıoğlu, A. Değirmencioğlu, F. Çağatay, Drying characteristics of laurel leaves under different drying conditions, in 7th Int Congr. Agric. Mechan. Energy, (1999) 565—569.

C. Wang, R. Singh, Trans. Am. Soc. Agric. Eng. 11 (1978) 668—672.

A. Kassem, Comparative studies on thin layer drying models for wheat, 13th Int. Congr. Agric. Eng., (1998) 2—6.

M. Kalender, Constr. Build. Mater. 155 (2017) 947—955. https://doi.org/10.1016/j.conbuildmat.2017.08.094.

L. Bennamoun, L. Kahlerras, F. Michel, L. Courard, T. Salmon, L. Fraikin, A. Belhamri, A. Léonard, Int. J. Energy Eng. 3 (2013) 1—6. https://hdl.handle.net/2268/134220.

H. Akaike, Factor analysis and AIC, Springer,New York, (1987). ISBN 0-387-98355-4.

F.P. Gomes, R. Osvaldo, E.P. Sousa, D.E. de Oliveira, F.R.d. Araújo Neto, Revista Brasileira de Engenharia Agrícola e Ambiental 22 (2018) 499—505. https://doi.org/10.1590/1807-1929/agriambi.v22n12p866-871.

V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16 (1965) 144—158. DOI: 10.5344/ajev.1965.16.3.144.

J. Lamaison, C. Petitjean-Freytet, A. Carnat, Annales Pharmaceutiques Francaises (France) 48 (1990) 103—108.

N.J. Miller, A.T. Diplock, C.A. Rice-Evans, J. Agric. Food Chem. 43 (1995) 1794—1801. https://doi.org/10.1021/jf00055a009.

Y. Gökçe, H. Kanmaz, B. Er, K. Sahin, A. Hayaloglu, Food Bioscience 43 (2021) 101228. https://doi.org/10.1016/j.fbio.2021.101228.

W. Brand-Williams, M.-E. Cuvelier, C. Berset, LWT-Food science and Technology 28 (1995) 25—30. https://doi.org/10.1016/S0023-6438(95)80008-5.

H. Toğrul, J. Food Eng. 77 (2006) 610—619. https://doi.org/10.1016/j.jfoodeng.2005.07.020.

Y. Siti Mahirah, M. Rabeta, R. Antora, Food Res. 2 (2018) 421—428. https://doi.org/10.26656/fr.2017.2(5).

R. Oonsivilai, P. Prasongdee, Total phenolic contents, total flavonoids and antioxidant activity of Thai basil (Ocimum basilicum L.), 5th Int. Conf. Nat. Prod. Health Beauty, Thailand, (2014).

H. Abramovic, V. Abram, A. Cuk, B. Ceh, S. Smole-Mozina, M. Vidmar, M. Pavlovic, N.P. Ulrih, Turk. J. Agric. For. 42 (2018) 185—194. https://doi.org/10.3906/tar-1711-82.

E.M. Kwee, E.D. Niemeyer, Food Chem. 128 (2011) 1044—1050. https://doi.org/10.1016/j.foodchem.2011.04.011.

U. Nazir, S. Javaid, H. Awais, F. Bashir, M. Shahid, Pure Appl. Biol. 10 (2021) 1004—1013. http://dx.doi.org/10.19045/bspab.2021.100105.

A.N. Yousif, C.H. Scaman, T.D. Durance, B. Girard, J. Agric. Food Chem. 47 (1999) 4777—4781. https://doi.org/10.1021/jf990484m.

D. Argyropoulos, J. Müller, Ind. Crops Prod. 52 (2014) 118—124. https://doi.org/10.1016/j.indcrop.2013.10.020.

M. Dorouzi, H. Mortezapour, H.-R. Akhavan, A.G. Moghaddam, Solar Energy 162 (2018) 364—371. https://doi.org/10.1016/j.solener.2018.01.025.

M. Ahmadi, K.R. Gluesenkamp, S. Bigham, Energy Convers. Manage. 230 (2021) 113763. https://doi.org/10.1016/j.enconman.2020.113763.

U. Pal, M.K. Khan, S. Mohanty, Drying Technol. 26 (2008) 1584—1590. https://doi.org/10.1080/07373930802467144.

E. Mancuhan, S. Özen, P. Sayan, S.T. Sargut, Drying Technol. 34 (2016) 1535—1545. https://doi.org/10.1080/07373937.2015.1135340.

A. Tarafdar, N. Jothi, B.P. Kaur, J. Appl. Res. Med. Aromat. Med. Plants 24 (2021) 100306. https://doi.org/10.1016/j.jarmap.2021.100306.

N. Çetin, J. Food Process. Preserv. 46 (2022) e17011. https://doi.org/10.1111/jfpp.17011.

T. Baysal, N. Ozbalta, S. Gokbulut, B. Capar, O. Tastan, G. Gurlek, Therm. Sci. Technol. 35 (2015) 135—144.

Graphical Abstract

Downloads

Published

24.02.2023 — Updated on 04.06.2023

Issue

Section

Articles

How to Cite

INVESTIGATION OF THE THIN LAYER DRYING OF MICROPROPAGATED OCIMUM BASILICUM L: MODELING BY DERIVED EQUATIONS, QUALITY CHARACTERISTICS, AND ENERGY EFFICIENCY: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(4), 299-309. https://doi.org/10.2298/CICEQ220722003K

Similar Articles

51-60 of 74

You may also start an advanced similarity search for this article.