THE EFFECT OF METAL-TITANIA INTERACTION ON PHOTODEGRADATION IN SBA-15-SUPPORTED METAL-TITANIA PHOTOCATALYSTS

Original scientific paper

Authors

  • Sevgi Can Göl Eskişehir Technical University, Dept. of Chemical Engineering, İki Eylül Campus, Eskişehir, 26555, Turkey https://orcid.org/0000-0002-2815-1201
  • Elif Akbay Eskişehir Technical University, Dept. of Chemical Engineering, İki Eylül Campus, Eskişehir, 26555, Turkey https://orcid.org/0000-0003-0323-7938

DOI:

https://doi.org/10.2298/CICEQ221017001G

Keywords:

Transition metals, mesoporous material, photocatalytic degradation, Ti-SBA-15, reusability

Abstract

Several transition metals (Fe, Cu, Ni, Cr, and Co) were inserted into the Ti-SBA-15 using two-step synthesis methods. XRD, SEM-EDX, N2 adsorption-desorption isotherms, XRF, and UV-DRS analysis were used for characterizations. The results confirmed preserving an ordered mesoporous structure, well-dispersed Ti-metal and enhanced light absorption compared with Ti-SBA-15. The photocatalytic performances were evaluated in the degradation of methylene blue under UV light. The results show that the Co-Ti-SBA-15 exhibited the highest photocatalytic activity among the prepared photocatalysts for the degradation of methylene blue. The significant activity increase might be attributed to the increased reactant adsorption by the mesoporous structure of SBA-15, the good distribution of TiO2 in the pores of SBA-15, and the increased electron transfer mobility due to metal doping. In addition to efficiency, Co-Ti-SBA-15 is a suitable catalyst for dye degradation, exhibiting good stability in methylene blue degradation over five photocatalytic runs without any deviation of the structure.

References

D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Water Res. 139 (2018) 118—131. https://doi.org/10.1016/j.watres.2018.03.042.

D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Water Res. 139 (2018) 118—131. https://doi.org/10.1016/j.watres.2018.03.042.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43(15) (2014) 5234—5244. https://doi.org/10.1039/C4CS00126E.

R. Singh S. Dutta, Adv. Powder Technol. 29(2) (2018) 211—219. https://doi.org/10.1016/j.apt.2017.11.005.

M. Saeed, A. Ahmad, R. Boddula, Inamuddin, A.u. Haq, A. Azhar, Environ. Chem. Let 16(1) (2018) 287—294. https://doi.org/10.1007/s10311-017-0661-z.

A. Priya, R.A. Senthil, A. Selvi, P. Arunachalam, C.K. Senthil Kumar, J. Madhavan, R. Boddula, R. Pothu, A.M. Al-Mayouf, Mater. Sci. Energy Technol. 3 (2020) 43—50. https://doi.org/10.1016/j.mset.2019.09.013.

M. Karimi, S. Mansour Bidoki, A. Benvidi, Environ. Eng. Res. 27(3) (2022) 200429—200420. https://doi.org/10.4491/eer.2020.429.

A. Maavia, I. Aslam, M. Tanveer, M. Rizwan, M.W. Iqbal,

M. Tahir, H. Hussain, R. Boddula, M. Yousuf, Mater. Sci. Energy Technol 2(2) (2019) 258—266. https://doi.org/10.1016/j.mset.2019.01.004.

A. Mehta, A. Mishra, M. Sharma, S. Singh, S. Basu, J. Nanopart. Res. 18(7) (2016). https://doi.org/10.1007/s11051-016-3523-x.

A.S.M. Nur, M. Sultana, A. Mondal, S. Islam, F.N. Robel, A. Islam, M.S.A. Sumi, J. Water Process. Eng. 47 (2022) 102728. https://doi.org/10.1016/j.jwpe.2022.102728.

Q. Wei, X.J. Chen, P.F. Wang, Y.B. Han, J.C. Xu, B. Hong, H.X. Jin, D.F. Jin, X.L. Peng, J. Li, Y.T. Yang, H.L. Ge, X.Q. Wang, Chem. Phys. 510 (2018) 47—53. https://doi.org/10.1016/j.chemphys.2018.05.012.

B. Castanheira, L. Otubo, C.L.P. Oliveira, R. Montes, J.B. Quintana, R. Rodil, S. Brochsztain, V.J.P. Vilar, A.C.S.C. Teixeira, Chemosphere 287 (2022) 132023. https://doi.org/10.1016/j.chemosphere.2021.132023.

M.T.P. da Silva, J. Villarroel-Rocha, C.F. Toncón-Leal, F.F. Barbosa, M.O. Miranda, M.A.M. Torres, K. Sapag, S.B.C. Pergher, T.P. Braga, Microporous Mesoporous Mater. 310 (2021). https://doi.org/10.1016/j.micromeso.2020.110582.

L.A. Calzada, R. Castellanos, L.A. García, T.E. Klimova, Microporous Mesoporous Mater. 285 (2019) 247—258. https://doi.org/10.1016/j.micromeso.2019.05.015.

T.-H. Liou, L.-W. Hung, C.-L. Liu, T.-Y. Zhang, J. Porous Mater. 25(5) (2018) 1337—1347. https://doi.org/10.1007/s10934-017-0544-5.

D.S. Conceição, C.A.L. Graça, D.P. Ferreira, A.M. Ferraria, I.M. Fonseca, A.M. Botelho do Rego, A.C.S.C. Teixeira, L.F. Vieira Ferreira, Microporous Mesoporous Mater. 253 (2017) 203—214. https://doi.org/10.1016/j.micromeso.2017.07.013.

M.M. Araújo, L.K.R. Silva, J.C. Sczancoski, M.O. Orlandi, E. Longo, A.G.D. Santos, J.L.S. Sá, R.S. Santos, G.E. Luz, L.S. Cavalcante, Appl. Surf. Sci. 389 (2016) 1137—1147. https://doi.org/10.1016/j.apsusc.2016.08.018.

G. Li, B. Wang, W.Q. Xu, Y. Han, Q. Sun, Dyes Pigm. 155 (2018) 265—275. https://doi.org/10.1016/j.dyepig.2018.03.058.

M. Filip, G. Petcu, E.M. Anghel, S. Petrescu, B. Trica, P. Osiceanu, N. Stanica, I. Atkinson, C. Munteanu, M. Mureseanu, V. Parvulescu, Catal. Today 366 (2021) 10—19. https://doi.org/10.1016/j.cattod.2020.08.003.

L. Liang, Y. Meng, L. Shi, J. Ma, J. Sun, Superlattices Microstruct. 73 (2014) 60—70. https://doi.org/10.1016/j.spmi.2014.05.008.

Y. Chen, J. Wang, W. Li, M. Ju, Mater. Lett. 159 (2015) 131—134. https://doi.org/10.1016/j.matlet.2015.04.030.

F. Chang, J. Wang, J. Luo, J. Sun, B. Deng, X. Hu, Colloids Surf. A. Physicochem. Eng. Asp. 499 (2016) 69—78. https://doi.org/10.1016/j.colsurfa.2016.04.013.

T.T. Nguyen, E.W. Qian, Microporous Mesoporous Mater. 265 (2018) 1—7. https://doi.org/10.1016/j.micromeso.2018.01.026.

D.C. Khandekar, A.R. Bhattacharyya, R. Bandyopadhyaya, J. Environ. Chem. Eng. 7(5) (2019) 103433. https://doi.org/10.1016/j.jece.2019.103433.

Y. Soni, S. Gupta, C.P. Vinod, Mol. Catal. 511 (2021). https://doi.org/10.1016/j.mcat.2021.111732.

W. Gao, X. Tang, H. Yi, S. Jiang, Q. Yu, X. Xie, R. Zhuang, J. Environ. Sci. 125 (2023) 112—134. https://doi.org/10.1016/j.jes.2021.11.014.

E. Akbay, T.G. Ölmez, Mater. Lett. 215 (2018) 263—267. https://doi.org/10.1016/j.matlet.2017.12.117.

K. Chandra Mouli, S. Mohanty, Y. Hu, A. Dalai, J. Adjaye, Catal. Today 207 (2013) 133—144. https://doi.org/10.1016/j.cattod.2012.07.010.

I.C. Nogueira, L.S. Cavalcante, P.F.S. Pereira, M.M. De Jesus, J.M. Rivas Mercury, N.C. Batista, M.S. Li, E. Longo, J. Appl. Crystallogr. 46(5) (2013) 1434—1446. https://doi.org/10.1107/S0021889813020335.

T. Qiang, Y. Song, J. Zhao, J. Li, J. Alloys Compd. 770 (2019) 792—802. https://doi.org/10.1016/j.jallcom.2018.08.074.

R. Malik, P.S. Rana, V.K. Tomer, V. Chaudhary, S.P. Nehra, S. Duhan, Microporous Mesoporous Mater. 225 (2016) 245—254. https://doi.org/10.1016/j.micromeso.2015.12.013.

P. Tamizhdurai, S. Narayanan, R. Kumaran, V.L. Mangesh, C. Kavitha, N. Vidhya Lakshmi, C. Ragupathi, Z.A. Alothman, M. Ouladsmane, G. Mani, Adv. Powder Technol. 32(11) (2021) 4286—4294. https://doi.org/10.1016/j.apt.2021.09.033.

V.R. Elías, G.O. Ferrero, R.G. Oliveira, G.A. Eimer, Microporous Mesoporous Mater. 236 (2016) 218—227. https://doi.org/10.1016/j.micromeso.2016.09.001.

W. Zhan, J. Yao, Z. Xiao, Y. Guo, Y. Wang, Y. Guo, G. Lu, Microporous Mesoporous Mater. 183 (2014) 150—155. https://doi.org/10.1016/j.micromeso.2013.08.038.

S.B.A. Hamid, N.A. Daud, D.D. Suppiah, W.A. Yehya, P. Sudarsanam, S.K. Bhargava, Polyhedron 120 (2016) 154—161. https://doi.org/10.1016/j.poly.2016.08.027.

M.J. da Silva, L.C. de Andrade Leles, M.G. Teixeira, React. Kinet.Mech.Catal. 131(2) (2020) 875—887. https://doi.org/10.1007/s11144-020-01888-4.

A. Wróblewska, P. Miądlicki, J. Sreńscek-Nazzal, M. Sadłowski, Z.C. Koren, B. Michalkiewicz, Microporous Mesoporous Mater. 258 (2018) 72—82. https://doi.org/10.1016/j.micromeso.2017.09.007.

Y.J. Acosta-Silva, R. Nava, V. Hernández-Morales, S.A. Macías-Sánchez, M.L. Gómez-Herrera, B. Pawelec, Appl. Catal., B. 110 (2011) 108—117. https://doi.org/10.1016/j.apcatb.2011.08.032.

R. Pothu, H. Mitta, R. Boddula, P. Balla, R. Gundeboyina, V. Perugopu, J. Ma, Mater. Sci. Technol. 5 (2022) 391—398. https://doi.org/10.1016/j.mset.2022.09.006.

P.V. Suraja, Z. Yaakob, N.N. Binitha, M.R. Resmi, P.P. Silija, Chem. Eng. J. 176-177 (2011) 265—271. https://doi.org/10.1016/j.cej.2011.05.071.

M.K. Sahu, R.K. Patel, J. Ind. Eng. Chem. 40 (2016) 72—82. https://doi.org/10.1016/j.jiec.2016.06.008.

J.S. DuChene, B.C. Sweeny, A.C. Johnston-Peck, D. Su, E.A. Stach, W.D. Wei, Angew. Chem. Int. Ed. 53(30) (2014) 7887—7891. https://doi.org/10.1002/anie.201404259.

F. Xia, E. Ou, L. Wang, J. Wang, Dyes Pigm. 76(1) (2008) 76—81. https://doi.org/10.1016/j.dyepig.2006.08.008.

L.F. Chen, U. Arellano, J.A. Wang, L.M. Balcázar, R. Sotelo, S. Solis, M. Azomosa, J. González, O.A. González Vargas, Y. Song, J. Liu, X.L. Zhou, Catal. Today 394—396 (2022) 62-80. https://doi.org/10.1016/j.cattod.2021.10.014.

S. Kumaravel, S. Thiripuranthagan, T. Vembuli, E. Erusappan, M. Durai, T. Sureshkumar, M. Durai, Optik 235 (2021) 166599. https://doi.org/10.1016/j.ijleo.2021.166599.

F. Chang, M. Jiao, Q. Xu, B. Deng, and X. Hu, Appl. Surf. Sci. 435 (2018) 708—717. https://doi.org/10.1016/j.apsusc.2017.11.168.

L. Hu, H. Yuan, L. Zou, F. Chen, X. Hu, Appl. Surf. Sci. 355 (2015) 706—715. https://doi.org/10.1016/j.apsusc.2015.04.166.

Graphical Abstract

Published

12.01.2023 — Updated on 04.06.2023

Issue

Section

Articles

How to Cite

THE EFFECT OF METAL-TITANIA INTERACTION ON PHOTODEGRADATION IN SBA-15-SUPPORTED METAL-TITANIA PHOTOCATALYSTS: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(4), 281-289. https://doi.org/10.2298/CICEQ221017001G

Funding data

Similar Articles

71-80 of 146

You may also start an advanced similarity search for this article.