EFFECTS OF MICROALGAL CONCENTRATION AND pH WITH FLOCCULANT ON MICROFILTRATION

Original scientific paper

Authors

  • Ana Luiza Mendes Universidade Federal do Paraná, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, 89065-300 Curitiba, Brazil
  • Daimon Jefferson Jung de Oliveira Universidade Federal do Paraná, Programa de Pós-graduação em Engenharia Química, 89065-300 Curitiba, Brazil
  • Thamayne Valadares de Oliveira Universidade Federal de Uberlândia, Faculdade de Engenharia Química, 38408-144 Uberlândia, Brazil https://orcid.org/0000-0003-0896-6363
  • Fernando Augusto Pederson Voll Universidade Federal do Paraná, Programa de Pós-graduação em Engenharia Química, 89065-300 Curitiba, Brazil https://orcid.org/0000-0002-7287-268X
  • Rafael Bruno Vieira Universidade Federal de Uberlândia, Faculdade de Engenharia Química, 38408-144 Uberlândia, Brazil https://orcid.org/0000-0003-2199-1870
  • Andre Bellini Mariano Universidade Federal do Paraná, Departamento de Engenharia Elétrica, 89065-300 Curitiba, Brazil

DOI:

https://doi.org/10.2298/CICEQ220125032M

Keywords:

Ceramic membrane, Microalgal, Microfiltration, Concentration, pH

Abstract

To make algal biomass a suitable feedstock for fuel and bioproducts, a practical way of dewatering and concentrating algal cells must be devised. In this study, a system comprising microfiltration membranes combined with a flocculant was developed on a low-cost ceramic substrate to harvest Tetradesmus obliquus efficiently. The effects of tannin-based flocculant concentration, microalgal concentration, and pH on microfiltration were studied. Permeate flux was evaluated for 5400 s through experiments to analyze the total resistance and the fouling mechanism. Results show that the cake filtration model best represented the data. The experiments at pH 4 and 0.06 kg/m3 of microalgae (with flocculant) showed improved results with a reduction in the J/J0 (permeate flux/initial flux) ratio of 39%. In addition, the effects of critical flux, transmembrane pressure, and fouling mechanism on microfiltration were investigated under the best conditions studied. Applying the stepping method to the critical flux yielded a permeate flux of 2.2 × 10-5 m3m−2s−1. The 70 kPa condition showed the highest permeate flux (3.0 × 10−5 m3m−2s−1) and a low cake pore blocking coefficient (k) obtained by the modified Hermia model. This study showed that Tanfloc at low pH could maximize microalgal separation in membrane processes.

References

K.H. Min, D.H. Kim, M. Ki, S.P. Pack, Bioresour. Technol. (2021) 126404. https://doi.org/10.1016/j.biortech.2021.126404.

M.K. Danquah, L. Ang, N. Uduman, N. Moheimani, G.M. Forde, J. Chem. Technol. Biotechnol. 84 (2009) 1078—1083. https://doi.org/10.1002/jctb.2137.

S. Jiang, Y. Zhang, F. Zhao, Z. Yu, X. Zhou, H. Chu, Algal Res. 35 (2018) 613—623. https://doi.org/10.1016/j.algal.2018.10.003.

Z. Zhao, A. Ilyas, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 309 (2020) 123367. https://doi.org/10.1016/j.biortech.2020.123367.

J.D. de Oliveira Henriques, M.W. Pedrassani, W. Klitzke, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Appl. Clay Sci. 150 (2017) 217—224. https://doi.org/10.1016/j.clay.2017.09.017.

R.H.R. Hanashiro, C.B. Stoco, T. V de Oliveira, M.K. Lenzi, A.B. Mariano, R.B. Vieira, Can. J. Chem. Eng. 0 (2019). https://doi.org/10.1002/cjce.23467.

D. Vandamme, I. Foubert, K. Muylaert, Trends Biotechnol. 31 (2013) 233—239. https://doi.org/10.1016/j.tibtech.2012.12.005.

Z. Zhao, K. Muylaert, I.F.J. Vankelecom, Water Res. 198 (2021) 117181. https://doi.org/10.1016/j.watres.2021.117181.

Z. Zhao, Y. Li, K. Muylaert, I.F.J. Vankelecom, Sep. Purif. Technol. 240 (2020) 116603. https://doi.org/10.1016/j.seppur.2020.116603.

V. Discart, M.R. Bilad, R. Moorkens, H. Arafat, I.F.J. Vankelecom, Algal Res. 9 (2015) 55—64. https://doi.org/10.1016/j.algal.2015.02.029.

F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Bioenergy Res. 10 (2017) 427—437. https://doi.org/10.1007/s12155-016-9806-3.

A.I. Barros, A.L. Gonçalves, M. Simões, J.C.M. Pires, Renew. Sustain. Energy Rev. 41 (2015) 1489—1500. https://doi.org/10.1016/j.rser.2014.09.037.

G. Kandasamy, S.R.M. Shaleh, Appl. Biochem. Biotechnol. 182 (2017) 586—597. https://doi.org/10.1007/s12010-016-2346-7.

N.F.H. Selesu, T. V. de Oliveira, D.O. Corrêa, B. Miyawaki, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Can. J. Chem. Eng. 94 (2016) 304—309. https://doi.org/10.1002/cjce.22391.

T. Nishimura, G.V. Garcia Lesak, L. Alves Xavier, R. Bruno Vieira, A. Bellin Mariano, Chem. Eng. Technol. 45 (2022) 230—237. https://doi.org/10.1002/ceat.202100490.

R. Gutiérrez, F. Passos, I. Ferrer, E. Uggetti, J. García, Algal Res. 9 (2015) 204—211. https://doi.org/10.1016/j.algal.2015.03.010.

C. Wan, M.A. Alam, X.Q. Zhao, X.Y. Zhang, S.L. Guo, S.H. Ho, J.S. Chang, F.W. Bai, Bioresour. Technol. 184 (2015) 251—257. https://doi.org/10.1016/j.biortech.2014.11.081.

M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam, M. Ouammou, A. Smith, H. Hannache, Desalination. 427 (2018) 42—50. https://doi.org/10.1016/j.desal.2017.11.005.

J.D.D.O. Henriques, M.W. Pedrassani, W. Klitzke, T.V. De Oliveira, P.A. Vieira, A.B. Mariano, R.B. Vieira, Rev. Mater. 24 (2019). https://doi.org/10.1590/s1517-707620190004.0826.

W. de Melo, G.V.G. Lesak, T.V. de Oliveira, F.A.P. Voll, A.F. Santos, R.B. Vieira, Mater. Res. 25 (2022). https://doi.org/10.1590/1980-5373-mr-2021-0365.

F. Wicaksana, A.G. Fane, P. Pongpairoj, R. Field, J. Memb. Sci. 387–388 (2012) 83—92. https://doi.org/10.1016/j.memsci.2011.10.013.

G. Singh, S.K. Patidar, J. Environ. Manage. 217 (2018) 499—508. https://doi.org/10.1016/j.jenvman.2018.04.010.

M.T. Alresheedi, O.D. Basu, B. Barbeau, Chemosphere. 226 (2019) 668—677. https://doi.org/10.1016/j.chemosphere.2019.03.188.

J. Luo, S.T. Morthensen, A.S. Meyer, M. Pinelo, J. Memb. Sci. 469 (2014) 127—139. https://doi.org/10.1016/j.memsci.2014.06.024.

D.O. Corrêa, B. Santos, F.G. Dias, J.V.C. Vargas, A.B. Mariano, W. Balmant, M.P. Rosa, D.C. Savi, V. Kava, C. Glienke, J.C. Ordonez, Int. J. Hydrogen Energy. 42 (2017) 21463—21475. https://doi.org/10.1016/j.ijhydene.2017.05.176.

L.A. Xavier, T.V. de Oliveira, W. Klitzke, A.B. Mariano, D. Eiras, R.B. Vieira, Appl. Clay Sci. 168 (2019) 260—268. https://doi.org/10.1016/j.clay.2018.11.025.

M. Mänttäri, M. Nyström, J. Memb. Sci. 170 (2000) 257—273. https://doi.org/10.1016/S0376-7388(99)00373-7.

B.G. Choobar, M.A. Alaei Shahmirzadi, A. Kargari, M. Manouchehri, J. Environ. Chem. Eng. 7 (2019) 103030. https://doi.org/10.1016/j.jece.2019.103030.

M.J. Corbatón-Báguena, M.C. Vincent-Vela, J.M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García, D. Catalán-Martínez, Sep. Purif. Technol. 170 (2016) 434—444. https://doi.org/10.1016/j.seppur.2016.07.007.

M.C. Vincent Vela, S. Álvarez Blanco, J. Lora García, E. Bergantiños Rodríguez, Chem. Eng. J. 149 (2009) 232—241. https://doi.org/10.1016/j.cej.2008.10.027.

E.M. Bainy, E.K. Lenzi, M.L. Corazza, M.K. Lenzi, Therm. Sci. 21 (2017) 41—50. https://doi.org/10.2298/TSCI160422241B.

J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, Desalination. 235 (2009) 102—109. https://doi.org/10.1016/j.desal.2008.01.013.

L. Brennan, P. Owende, Renew. Sustain. Energy Rev. 14 (2010) 557—577. https://doi.org/10.1016/j.rser.2009.10.009.

S. Laksono, I.M.A. ElSherbiny, S.A. Huber, S. Panglisch, Chem. Eng. J. 420 (2021) 127723. https://doi.org/10.1016/j.cej.2020.127723.

H. Salehizadeh, N. Yan, Biotechnol. Adv. 32 (2014) 1506—1522. https://doi.org/10.1016/j.biotechadv.2014.10.004.

U. Suparmaniam, M. Kee, Y. Uemura, J. Wei, K. Teong, S. Hoong, Renew. Sustain. Energy Rev. 115 (2019) 109361. https://doi.org/10.1016/j.rser.2019.109361.

M.R. Bilad, V. Discart, D. Vandamme, I. Foubert, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 138 (2013) 329—338. https://doi.org/10.1016/j.biortech.2013.03.175.

R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, J. Memb. Sci. 100 (1995) 259—272. https://doi.org/10.1016/0376-7388(94)00265-Z.

T. De Baerdemaeker, B. Lemmens, C. Dotremont, J. Fret, L. Roef, K. Goiris, L. Diels, Bioresour. Technol. 129 (2013) 582—591. https://doi.org/10.1016/j.biortech.2012.10.153.

P. Le Clech, B. Jefferson, I.S. Chang, S.J. Judd, J. Memb. Sci. 227 (2003) 81—93. https://doi.org/10.1016/j.memsci.2003.07.021.

R.W. Field, G.K. Pearce, Adv. Colloid Interface Sci. 164 (2011) 38—44. https://doi.org/10.1016/j.cis.2010.12.008.

Downloads

Published

21.12.2022 — Updated on 04.06.2023

Issue

Section

Articles

How to Cite

EFFECTS OF MICROALGAL CONCENTRATION AND pH WITH FLOCCULANT ON MICROFILTRATION: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(4), 253-262. https://doi.org/10.2298/CICEQ220125032M

Similar Articles

21-30 of 66

You may also start an advanced similarity search for this article.