EFFECTS OF MICROALGAL CONCENTRATION AND pH WITH FLOCCULANT ON MICROFILTRATION
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ220125032MKeywords:
Ceramic membrane, Microalgal, Microfiltration, Concentration, pHAbstract
To make algal biomass a suitable feedstock for fuel and bioproducts, a practical way of dewatering and concentrating algal cells must be devised. In this study, a system comprising microfiltration membranes combined with a flocculant was developed on a low-cost ceramic substrate to harvest Tetradesmus obliquus efficiently. The effects of tannin-based flocculant concentration, microalgal concentration, and pH on microfiltration were studied. Permeate flux was evaluated for 5400 s through experiments to analyze the total resistance and the fouling mechanism. Results show that the cake filtration model best represented the data. The experiments at pH 4 and 0.06 kg/m3 of microalgae (with flocculant) showed improved results with a reduction in the J/J0 (permeate flux/initial flux) ratio of 39%. In addition, the effects of critical flux, transmembrane pressure, and fouling mechanism on microfiltration were investigated under the best conditions studied. Applying the stepping method to the critical flux yielded a permeate flux of 2.2 × 10-5 m3m−2s−1. The 70 kPa condition showed the highest permeate flux (3.0 × 10−5 m3m−2s−1) and a low cake pore blocking coefficient (k) obtained by the modified Hermia model. This study showed that Tanfloc at low pH could maximize microalgal separation in membrane processes.
References
K.H. Min, D.H. Kim, M. Ki, S.P. Pack, Bioresour. Technol. (2021) 126404. https://doi.org/10.1016/j.biortech.2021.126404.
M.K. Danquah, L. Ang, N. Uduman, N. Moheimani, G.M. Forde, J. Chem. Technol. Biotechnol. 84 (2009) 1078—1083. https://doi.org/10.1002/jctb.2137.
S. Jiang, Y. Zhang, F. Zhao, Z. Yu, X. Zhou, H. Chu, Algal Res. 35 (2018) 613—623. https://doi.org/10.1016/j.algal.2018.10.003.
Z. Zhao, A. Ilyas, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 309 (2020) 123367. https://doi.org/10.1016/j.biortech.2020.123367.
J.D. de Oliveira Henriques, M.W. Pedrassani, W. Klitzke, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Appl. Clay Sci. 150 (2017) 217—224. https://doi.org/10.1016/j.clay.2017.09.017.
R.H.R. Hanashiro, C.B. Stoco, T. V de Oliveira, M.K. Lenzi, A.B. Mariano, R.B. Vieira, Can. J. Chem. Eng. 0 (2019). https://doi.org/10.1002/cjce.23467.
D. Vandamme, I. Foubert, K. Muylaert, Trends Biotechnol. 31 (2013) 233—239. https://doi.org/10.1016/j.tibtech.2012.12.005.
Z. Zhao, K. Muylaert, I.F.J. Vankelecom, Water Res. 198 (2021) 117181. https://doi.org/10.1016/j.watres.2021.117181.
Z. Zhao, Y. Li, K. Muylaert, I.F.J. Vankelecom, Sep. Purif. Technol. 240 (2020) 116603. https://doi.org/10.1016/j.seppur.2020.116603.
V. Discart, M.R. Bilad, R. Moorkens, H. Arafat, I.F.J. Vankelecom, Algal Res. 9 (2015) 55—64. https://doi.org/10.1016/j.algal.2015.02.029.
F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Bioenergy Res. 10 (2017) 427—437. https://doi.org/10.1007/s12155-016-9806-3.
A.I. Barros, A.L. Gonçalves, M. Simões, J.C.M. Pires, Renew. Sustain. Energy Rev. 41 (2015) 1489—1500. https://doi.org/10.1016/j.rser.2014.09.037.
G. Kandasamy, S.R.M. Shaleh, Appl. Biochem. Biotechnol. 182 (2017) 586—597. https://doi.org/10.1007/s12010-016-2346-7.
N.F.H. Selesu, T. V. de Oliveira, D.O. Corrêa, B. Miyawaki, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Can. J. Chem. Eng. 94 (2016) 304—309. https://doi.org/10.1002/cjce.22391.
T. Nishimura, G.V. Garcia Lesak, L. Alves Xavier, R. Bruno Vieira, A. Bellin Mariano, Chem. Eng. Technol. 45 (2022) 230—237. https://doi.org/10.1002/ceat.202100490.
R. Gutiérrez, F. Passos, I. Ferrer, E. Uggetti, J. García, Algal Res. 9 (2015) 204—211. https://doi.org/10.1016/j.algal.2015.03.010.
C. Wan, M.A. Alam, X.Q. Zhao, X.Y. Zhang, S.L. Guo, S.H. Ho, J.S. Chang, F.W. Bai, Bioresour. Technol. 184 (2015) 251—257. https://doi.org/10.1016/j.biortech.2014.11.081.
M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam, M. Ouammou, A. Smith, H. Hannache, Desalination. 427 (2018) 42—50. https://doi.org/10.1016/j.desal.2017.11.005.
J.D.D.O. Henriques, M.W. Pedrassani, W. Klitzke, T.V. De Oliveira, P.A. Vieira, A.B. Mariano, R.B. Vieira, Rev. Mater. 24 (2019). https://doi.org/10.1590/s1517-707620190004.0826.
W. de Melo, G.V.G. Lesak, T.V. de Oliveira, F.A.P. Voll, A.F. Santos, R.B. Vieira, Mater. Res. 25 (2022). https://doi.org/10.1590/1980-5373-mr-2021-0365.
F. Wicaksana, A.G. Fane, P. Pongpairoj, R. Field, J. Memb. Sci. 387–388 (2012) 83—92. https://doi.org/10.1016/j.memsci.2011.10.013.
G. Singh, S.K. Patidar, J. Environ. Manage. 217 (2018) 499—508. https://doi.org/10.1016/j.jenvman.2018.04.010.
M.T. Alresheedi, O.D. Basu, B. Barbeau, Chemosphere. 226 (2019) 668—677. https://doi.org/10.1016/j.chemosphere.2019.03.188.
J. Luo, S.T. Morthensen, A.S. Meyer, M. Pinelo, J. Memb. Sci. 469 (2014) 127—139. https://doi.org/10.1016/j.memsci.2014.06.024.
D.O. Corrêa, B. Santos, F.G. Dias, J.V.C. Vargas, A.B. Mariano, W. Balmant, M.P. Rosa, D.C. Savi, V. Kava, C. Glienke, J.C. Ordonez, Int. J. Hydrogen Energy. 42 (2017) 21463—21475. https://doi.org/10.1016/j.ijhydene.2017.05.176.
L.A. Xavier, T.V. de Oliveira, W. Klitzke, A.B. Mariano, D. Eiras, R.B. Vieira, Appl. Clay Sci. 168 (2019) 260—268. https://doi.org/10.1016/j.clay.2018.11.025.
M. Mänttäri, M. Nyström, J. Memb. Sci. 170 (2000) 257—273. https://doi.org/10.1016/S0376-7388(99)00373-7.
B.G. Choobar, M.A. Alaei Shahmirzadi, A. Kargari, M. Manouchehri, J. Environ. Chem. Eng. 7 (2019) 103030. https://doi.org/10.1016/j.jece.2019.103030.
M.J. Corbatón-Báguena, M.C. Vincent-Vela, J.M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García, D. Catalán-Martínez, Sep. Purif. Technol. 170 (2016) 434—444. https://doi.org/10.1016/j.seppur.2016.07.007.
M.C. Vincent Vela, S. Álvarez Blanco, J. Lora García, E. Bergantiños Rodríguez, Chem. Eng. J. 149 (2009) 232—241. https://doi.org/10.1016/j.cej.2008.10.027.
E.M. Bainy, E.K. Lenzi, M.L. Corazza, M.K. Lenzi, Therm. Sci. 21 (2017) 41—50. https://doi.org/10.2298/TSCI160422241B.
J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, Desalination. 235 (2009) 102—109. https://doi.org/10.1016/j.desal.2008.01.013.
L. Brennan, P. Owende, Renew. Sustain. Energy Rev. 14 (2010) 557—577. https://doi.org/10.1016/j.rser.2009.10.009.
S. Laksono, I.M.A. ElSherbiny, S.A. Huber, S. Panglisch, Chem. Eng. J. 420 (2021) 127723. https://doi.org/10.1016/j.cej.2020.127723.
H. Salehizadeh, N. Yan, Biotechnol. Adv. 32 (2014) 1506—1522. https://doi.org/10.1016/j.biotechadv.2014.10.004.
U. Suparmaniam, M. Kee, Y. Uemura, J. Wei, K. Teong, S. Hoong, Renew. Sustain. Energy Rev. 115 (2019) 109361. https://doi.org/10.1016/j.rser.2019.109361.
M.R. Bilad, V. Discart, D. Vandamme, I. Foubert, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 138 (2013) 329—338. https://doi.org/10.1016/j.biortech.2013.03.175.
R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, J. Memb. Sci. 100 (1995) 259—272. https://doi.org/10.1016/0376-7388(94)00265-Z.
T. De Baerdemaeker, B. Lemmens, C. Dotremont, J. Fret, L. Roef, K. Goiris, L. Diels, Bioresour. Technol. 129 (2013) 582—591. https://doi.org/10.1016/j.biortech.2012.10.153.
P. Le Clech, B. Jefferson, I.S. Chang, S.J. Judd, J. Memb. Sci. 227 (2003) 81—93. https://doi.org/10.1016/j.memsci.2003.07.021.
R.W. Field, G.K. Pearce, Adv. Colloid Interface Sci. 164 (2011) 38—44. https://doi.org/10.1016/j.cis.2010.12.008.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Ana Luiza Mendes, Daimon Jefferson Jung de Oliveira, Thamayne Valadares de Oliveira, Fernando Augusto Pederson Voll, Rafael Bruno Vieira, Andre Bellini Mariano
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 425125/2018-1 -
Fundacion Araucaria