STUDY OF CATALYTIC OXIDATION OF TOLUENE USING Cu–Mn, Co–Mn, AND Ni–Mn MIXED OXIDES CATALYSTS

Original scientific paper

Authors

  • Alanna Silveira de Moraes Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Passo da Pátria Street, 156/bl E/102-A, CEP: 24210-240, Niterói, RJ, Brazil https://orcid.org/0000-0002-3969-8560
  • Gabriela Oliveira Castro Poncinelli Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Passo da Pátria Street, 156/bl E/102-A, CEP: 24210-240, Niterói, RJ, Brazil https://orcid.org/0000-0002-2449-2877
  • Aron Seixas Terra Rodrigues Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Passo da Pátria Street, 156/bl E/102-A, CEP: 24210-240, Niterói, RJ, Brazil https://orcid.org/0000-0002-2049-7494
  • Laise Fazol do Couto Fazol do Couto1, Silvia Luciana Fávaro2, Rita de Cássia Colman1* 1. Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Passo da Pátria Street, 156/bl E/102-A, CEP: 24210-240, Niterói, RJ, Brazil https://orcid.org/0000-0002-9724-7370
  • Silvia Luciana Fávaro Universidade Estadual de Maringá – Mechanical Engineering Department, Colombo Avenue, 5790 CEP: 87020-900, Maringá, PR, Brazil
  • Rita de Cássia Colman Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Passo da Pátria Street, 156/bl E/102-A, CEP: 24210-240, Niterói, RJ, Brazil https://orcid.org/0000-0003-2492-776X

DOI:

https://doi.org/10.2298/CICEQ220419031M

Keywords:

solution combustion synthesis, fuel to nitrates ratio, manganite spinels, toluene oxidation

Abstract

The successful synthesis of AMn2O4 (A = Co, Cu, and Ni) spinels via solution combustion was achieved in less time than other methods. All catalysts with the same fuel/nitrate ratio were used to oxidize toluene, and the relationship between their properties and activities was investigated. Among all, nickel manganite exhibited the most promising activity, and by changing the fuel/nitrate ratio, it was sought to obtain the most appropriate structure for the reaction studied. Physico-chemical analysis was used to define the characteristics of the synthesized catalysts. The results showed the successful synthesis of spinels and indicated that other materials peaks (single oxide phases) exist in the catalyst structure. BET-BJH analyses reveal the mesoporous structures and, given the limitations of the equipment, were all classified as less than 10 m2/g. The SEM images evidence the influence of the urea content used. The particle size increases at higher fuel/nitrate ratios. Samples of NiMn1.67 and NiMn2.08 showed larger and denser, sparsely dispersed clusters. Simultaneously considering reactor analysis and test results, it was found that the synthesized catalyst with a fuel/nitrate ratio of 0.5 has the best performance on toluene oxidation.

References

L. Pei, W. Yin, J. Wang, J. Chen, C. Fan, Q. Zhang, Mater. Res. 13 (2010) 339—343. https://doi.org/10.1590/S1516-1439201000030001.

C. He, J. Cheng, X. Zhang, M. Douthwaite, Z. Hao, Chem.

Rev. 119 (2019) 4471—4568. https://doi.org/10.1021/acs.chemrev.8b00408.

S. Hosseini, Adv. Ceram. Sci. Eng. 5 (2016) 1—10. https://doi.org/10.14355/acse.2016.05.001.

R. Fang, J. Huang, X. Huang, X. Luo, Y. Sun, F. Dong, H. Huang, Chemosphere 289 (2022) 2—10. https://doi.org/10.1016/j.chemosphere.2021.133081.

M. Castaño, R. Molina, S. Moreno, Appl. Catal., A 492 (2015) 48—59. https://doi.org/10.1016/j.apcata.2014.12.009.

J. Li, W. Cui, P. Chen, X. Dong, Y. Chu, J. Sheng, Y. Zhang, Z. Wang, F. Dong, Appl. Catal. B Environ. 260 (2020) 118130—118136. https://doi.org/10.1016/j.apcatb.2019.118130.

E. Genty, S. Siffert, R. Cousin, Catal. Today 333 (2019) 28—35. https://doi.org/10.1016/j.cattod.2018.03.018.

A. Kostyniuk, D. Bajec, B. Likozar, J. of Ind. Eng. Chem. 96 (2021) 130—143. http://dx.doi.org/10.1016/j.proci.2006.07.052.

C. Gennequin, S. Siffert, R. Cousin, A. Aboukaïs, Top. Catal. 52 (2009) 482—491. https://doi.org/10.1007/s11244-009-9183-7.

F. Aguero, B. Barbero, L. Gambaro, L. Cadús, Appl. Catal., B 91(2009) 108—112. http://dx.doi.org/10.1016/j.apcatb.2009.05.012.

B. Silva, H. Figueiredo, V. Santos, M. Pereirab, J. Figueiredo, A.Lewandowskac, M. Bañares, I.Neves, T. Tavaresa, J. Hazard. Mater. 192 (2011) 545—553. https://doi.org/10.1016/j.jhazmat.2011.05.056.

S. Hosseini, A. Niaei, D. Salari, S. Nabavi, Ceram. Int. 38 (2012) 1655—1661. https://doi.org/10.1016/j.ceramint.2011.09.057.

B. Langford, Atmos. Chem. Phys. 10 (2010) 8391—8412. https://doi.org/10.5194/acp-10-8391-2010.

C. Bozo, N. Guilhaume, E. Garbowski, M. Primet, Catal. Today 59 (2000) 33—45. https://doi.org/10.1016/S0920-5861(00)00270-4.

N. Kumar, K. Jothimurugesan, G. Stanley, V. Schwartz, J. Spivey, J. Phys. Chem. C 115 (2011) 990—998. https://doi.org/10.1021/jp104878e.

W. Wen, J. Wu, RSC Adv. 4 (2014) 58090—58100. https://doi.org/10.1039/C4RA10145F.

J. Védrine, Met. Oxides Heterog. Catal. , Elsevier B.V. (2018) 551—569. https://doi.org/10.1016/B978-0-12-811631-9.00009-0.

S. Saqer, D. Kondarides, X. Verykios, Appl. Catal., B 103 (2011) 275—286. https://doi.org/10.1016/j.apcatb.2011.01.001.

V. Radonjić, J. Krstić, D. Lončarević, N. Vukelić, D. Jovanović, Chem. Ind. Chem. Eng. Q. 25 (2019) 193—206. https://doi.org/10.2298/CICEQ181001032R.

S. Aruna, A. Mukasyan, Solid State Mater. Sci. 12 (2008) 44—50. https://doi.org/10.1016/j.cossms.2008.12.002.

J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, H. Ajamein, Ceram. Int. 40 (2014) 14177—14184. https://doi.org/10.1016/j.ceramint.2014.06.005.

A. Varma, A. Mukasyan, A. Rogachev, K. Manukyan, Chem. Rev. 116 (2016) 14493—14586. https://doi.org/10.1021/acs.chemrev.6b00279.

M. Ouaguenouni, A. Benadda, A. Kiennemann, A. Barama, C. R. Chim. 12 (2009) 740—747. https://doi.org/10.1016/j.crci.2008.12.002.

D. Jeong, W. Jang, J. Shim, H. Roh, Int. J. Hydrogen Energy 41 (2016) 3870—3876. https://doi.org/10.1016/j.ijhydene.2016.01.024.

S. Brunauer, P. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309—319. https://doi.org/10.1021/ja01269a023.

L. Joyner, E. Barret, , R. Skold, J. Am. Chem. Soc. 73 (1951) 3155—3158. https://doi.org/10.1021/ja01151a046.

T. Horikawa, D. Do, D. Nicholson, Adv. Colloid Interface Sci. 169 (2011) 40—58. https://doi.org/10.1016/j.cis.2011.08.003.

G. Ertl, H. Knözinger, J. Weitkamp, Handb. Heterog. Catal. (2nd Ed.) , Germany: VCH Verlagsgesellschaft mdH, (1997), 49—138. https://doi.org/10.1002/9783527619474.

K. Sing, Pure & Appl. Chem. 57 (1985) 603—619. https://doi.org/10.1351/pac198557040603.

L. Bach, B. Quynh, V. Thuan, C. Thang, K. Lim, J. Nanosci. Nanotechnol. 16 (2016) 8482—8485. https://doi.org/10.1166/jnn.2016.12511.

A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R. Simon, J. Alloys Compd. 462 (2008) 142—146. https://doi.org/10.1016/j.jallcom.2007.07.101.

Y. Huang, Y. Tang, J. Wang, Q. Chen, Mater. Chem. Phys. 97 (2006) 394—397. https://doi.org/10.1016/j.matchemphys.2005.08.035.

M. Taibi, S. Ammar, N. Jouini, F. Fievet, P. Molinie, M. Drillon, J. Mater. Chem. 12 (2002) 3238—3244. https://doi.org/10.1039/B204087E.

A. Salker, S. Gurav, J. Mater. Sci. 35 (2000) 4713—4719. https://doi.org/10.1023/A:1004803123577.

R. Zampiva, C. Junior, A. Alves, C. Bergmann, FME Transactions. 46 (2018) 157—164. https://doi.org/10.5937/fmet1802157Z.

D. Aguilera, A. Perez, R. Molina, S. Moreno, Appl. Catal., B 104 (2011) 144—150. https://doi.org/10.1016/j.apcatb.2011.02.019.

J. Toniolo, A. Takimi, C. Bergmann, Mater. Res. Bull. 45 (2010) 672—676. https://doi.org/10.1016/j.materresbull.2010.03.001.

Q. Tang, C. Wu, R. Qiao, Y. Chen, Y. Yang, Appl. Catal., A 403 (2011) 136—141. https://doi.org/10.1016/j.apcata.2011.06.023.

F. Kovanda, K. Jirátová, Applied Clay Science, 53 (2011) 305—316. https://doi.org/10.1016/j.clay.2010.12.030.

S. Kim, Y. Park, J. Nah, Powder Technology, 266 (2014) 292—298. https://doi.org/10.1016/j.powtec.2014.06.049.

T. Xue, R. Li, W. Goa, Y. Goa, Q. Wang, A. Umar, J. Nanosci. Nanotechnol, 18 (2018) 3381—3386. https://doi.org/10.1166/jnn.2018.14627.

H. Yang, J. Deng, Y. Liu, S. Xie, Z. Wu, H. Dai, Journal of Molecular Catalysis A: Chemical 414 (2016) 9—18. https://doi.org/10.1016/j.molcata.2015.12.010.

L. Liu, Y. Song, Z. Fu, Q. Ye, S. Cheng, T. Kang, H. Dai, Appl. Surf. Sci. 396 (2017) 599—608. https://doi.org/10.1016/j.apsusc.2016.10.202.

S. Carabineiro, X. Chen, M. Konsolakis, A. Psarras, P. Tavares, J. Órfão, M. Pereira, J. Figueiredo, Catalysis Today 244 (2015) 161—171. https://doi.org/10.1016/j.cattod.2014.06.018.

G. Soylu, Z. Özçelik, I. Boz, Chem. Eng. J. 162 (2010) 380—387. https://doi.org/10.1016/j.cej.2010.05.020.

Published

16.12.2022 — Updated on 06.04.2023

Issue

Section

Articles

How to Cite

STUDY OF CATALYTIC OXIDATION OF TOLUENE USING Cu–Mn, Co–Mn, AND Ni–Mn MIXED OXIDES CATALYSTS: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(3), 243-252. https://doi.org/10.2298/CICEQ220419031M

Similar Articles

51-60 of 75

You may also start an advanced similarity search for this article.