STUDY OF CATALYTIC OXIDATION OF TOLUENE USING Cu–Mn, Co–Mn, AND Ni–Mn MIXED OXIDES CATALYSTS
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ220419031MKeywords:
solution combustion synthesis, fuel to nitrates ratio, manganite spinels, toluene oxidationAbstract
The successful synthesis of AMn2O4 (A = Co, Cu, and Ni) spinels via solution combustion was achieved in less time than other methods. All catalysts with the same fuel/nitrate ratio were used to oxidize toluene, and the relationship between their properties and activities was investigated. Among all, nickel manganite exhibited the most promising activity, and by changing the fuel/nitrate ratio, it was sought to obtain the most appropriate structure for the reaction studied. Physico-chemical analysis was used to define the characteristics of the synthesized catalysts. The results showed the successful synthesis of spinels and indicated that other materials peaks (single oxide phases) exist in the catalyst structure. BET-BJH analyses reveal the mesoporous structures and, given the limitations of the equipment, were all classified as less than 10 m2/g. The SEM images evidence the influence of the urea content used. The particle size increases at higher fuel/nitrate ratios. Samples of NiMn1.67 and NiMn2.08 showed larger and denser, sparsely dispersed clusters. Simultaneously considering reactor analysis and test results, it was found that the synthesized catalyst with a fuel/nitrate ratio of 0.5 has the best performance on toluene oxidation.
References
L. Pei, W. Yin, J. Wang, J. Chen, C. Fan, Q. Zhang, Mater. Res. 13 (2010) 339—343. https://doi.org/10.1590/S1516-1439201000030001.
C. He, J. Cheng, X. Zhang, M. Douthwaite, Z. Hao, Chem.
Rev. 119 (2019) 4471—4568. https://doi.org/10.1021/acs.chemrev.8b00408.
S. Hosseini, Adv. Ceram. Sci. Eng. 5 (2016) 1—10. https://doi.org/10.14355/acse.2016.05.001.
R. Fang, J. Huang, X. Huang, X. Luo, Y. Sun, F. Dong, H. Huang, Chemosphere 289 (2022) 2—10. https://doi.org/10.1016/j.chemosphere.2021.133081.
M. Castaño, R. Molina, S. Moreno, Appl. Catal., A 492 (2015) 48—59. https://doi.org/10.1016/j.apcata.2014.12.009.
J. Li, W. Cui, P. Chen, X. Dong, Y. Chu, J. Sheng, Y. Zhang, Z. Wang, F. Dong, Appl. Catal. B Environ. 260 (2020) 118130—118136. https://doi.org/10.1016/j.apcatb.2019.118130.
E. Genty, S. Siffert, R. Cousin, Catal. Today 333 (2019) 28—35. https://doi.org/10.1016/j.cattod.2018.03.018.
A. Kostyniuk, D. Bajec, B. Likozar, J. of Ind. Eng. Chem. 96 (2021) 130—143. http://dx.doi.org/10.1016/j.proci.2006.07.052.
C. Gennequin, S. Siffert, R. Cousin, A. Aboukaïs, Top. Catal. 52 (2009) 482—491. https://doi.org/10.1007/s11244-009-9183-7.
F. Aguero, B. Barbero, L. Gambaro, L. Cadús, Appl. Catal., B 91(2009) 108—112. http://dx.doi.org/10.1016/j.apcatb.2009.05.012.
B. Silva, H. Figueiredo, V. Santos, M. Pereirab, J. Figueiredo, A.Lewandowskac, M. Bañares, I.Neves, T. Tavaresa, J. Hazard. Mater. 192 (2011) 545—553. https://doi.org/10.1016/j.jhazmat.2011.05.056.
S. Hosseini, A. Niaei, D. Salari, S. Nabavi, Ceram. Int. 38 (2012) 1655—1661. https://doi.org/10.1016/j.ceramint.2011.09.057.
B. Langford, Atmos. Chem. Phys. 10 (2010) 8391—8412. https://doi.org/10.5194/acp-10-8391-2010.
C. Bozo, N. Guilhaume, E. Garbowski, M. Primet, Catal. Today 59 (2000) 33—45. https://doi.org/10.1016/S0920-5861(00)00270-4.
N. Kumar, K. Jothimurugesan, G. Stanley, V. Schwartz, J. Spivey, J. Phys. Chem. C 115 (2011) 990—998. https://doi.org/10.1021/jp104878e.
W. Wen, J. Wu, RSC Adv. 4 (2014) 58090—58100. https://doi.org/10.1039/C4RA10145F.
J. Védrine, Met. Oxides Heterog. Catal. , Elsevier B.V. (2018) 551—569. https://doi.org/10.1016/B978-0-12-811631-9.00009-0.
S. Saqer, D. Kondarides, X. Verykios, Appl. Catal., B 103 (2011) 275—286. https://doi.org/10.1016/j.apcatb.2011.01.001.
V. Radonjić, J. Krstić, D. Lončarević, N. Vukelić, D. Jovanović, Chem. Ind. Chem. Eng. Q. 25 (2019) 193—206. https://doi.org/10.2298/CICEQ181001032R.
S. Aruna, A. Mukasyan, Solid State Mater. Sci. 12 (2008) 44—50. https://doi.org/10.1016/j.cossms.2008.12.002.
J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, H. Ajamein, Ceram. Int. 40 (2014) 14177—14184. https://doi.org/10.1016/j.ceramint.2014.06.005.
A. Varma, A. Mukasyan, A. Rogachev, K. Manukyan, Chem. Rev. 116 (2016) 14493—14586. https://doi.org/10.1021/acs.chemrev.6b00279.
M. Ouaguenouni, A. Benadda, A. Kiennemann, A. Barama, C. R. Chim. 12 (2009) 740—747. https://doi.org/10.1016/j.crci.2008.12.002.
D. Jeong, W. Jang, J. Shim, H. Roh, Int. J. Hydrogen Energy 41 (2016) 3870—3876. https://doi.org/10.1016/j.ijhydene.2016.01.024.
S. Brunauer, P. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309—319. https://doi.org/10.1021/ja01269a023.
L. Joyner, E. Barret, , R. Skold, J. Am. Chem. Soc. 73 (1951) 3155—3158. https://doi.org/10.1021/ja01151a046.
T. Horikawa, D. Do, D. Nicholson, Adv. Colloid Interface Sci. 169 (2011) 40—58. https://doi.org/10.1016/j.cis.2011.08.003.
G. Ertl, H. Knözinger, J. Weitkamp, Handb. Heterog. Catal. (2nd Ed.) , Germany: VCH Verlagsgesellschaft mdH, (1997), 49—138. https://doi.org/10.1002/9783527619474.
K. Sing, Pure & Appl. Chem. 57 (1985) 603—619. https://doi.org/10.1351/pac198557040603.
L. Bach, B. Quynh, V. Thuan, C. Thang, K. Lim, J. Nanosci. Nanotechnol. 16 (2016) 8482—8485. https://doi.org/10.1166/jnn.2016.12511.
A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R. Simon, J. Alloys Compd. 462 (2008) 142—146. https://doi.org/10.1016/j.jallcom.2007.07.101.
Y. Huang, Y. Tang, J. Wang, Q. Chen, Mater. Chem. Phys. 97 (2006) 394—397. https://doi.org/10.1016/j.matchemphys.2005.08.035.
M. Taibi, S. Ammar, N. Jouini, F. Fievet, P. Molinie, M. Drillon, J. Mater. Chem. 12 (2002) 3238—3244. https://doi.org/10.1039/B204087E.
A. Salker, S. Gurav, J. Mater. Sci. 35 (2000) 4713—4719. https://doi.org/10.1023/A:1004803123577.
R. Zampiva, C. Junior, A. Alves, C. Bergmann, FME Transactions. 46 (2018) 157—164. https://doi.org/10.5937/fmet1802157Z.
D. Aguilera, A. Perez, R. Molina, S. Moreno, Appl. Catal., B 104 (2011) 144—150. https://doi.org/10.1016/j.apcatb.2011.02.019.
J. Toniolo, A. Takimi, C. Bergmann, Mater. Res. Bull. 45 (2010) 672—676. https://doi.org/10.1016/j.materresbull.2010.03.001.
Q. Tang, C. Wu, R. Qiao, Y. Chen, Y. Yang, Appl. Catal., A 403 (2011) 136—141. https://doi.org/10.1016/j.apcata.2011.06.023.
F. Kovanda, K. Jirátová, Applied Clay Science, 53 (2011) 305—316. https://doi.org/10.1016/j.clay.2010.12.030.
S. Kim, Y. Park, J. Nah, Powder Technology, 266 (2014) 292—298. https://doi.org/10.1016/j.powtec.2014.06.049.
T. Xue, R. Li, W. Goa, Y. Goa, Q. Wang, A. Umar, J. Nanosci. Nanotechnol, 18 (2018) 3381—3386. https://doi.org/10.1166/jnn.2018.14627.
H. Yang, J. Deng, Y. Liu, S. Xie, Z. Wu, H. Dai, Journal of Molecular Catalysis A: Chemical 414 (2016) 9—18. https://doi.org/10.1016/j.molcata.2015.12.010.
L. Liu, Y. Song, Z. Fu, Q. Ye, S. Cheng, T. Kang, H. Dai, Appl. Surf. Sci. 396 (2017) 599—608. https://doi.org/10.1016/j.apsusc.2016.10.202.
S. Carabineiro, X. Chen, M. Konsolakis, A. Psarras, P. Tavares, J. Órfão, M. Pereira, J. Figueiredo, Catalysis Today 244 (2015) 161—171. https://doi.org/10.1016/j.cattod.2014.06.018.
G. Soylu, Z. Özçelik, I. Boz, Chem. Eng. J. 162 (2010) 380—387. https://doi.org/10.1016/j.cej.2010.05.020.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Alanna Silveira de Moraes, Gabriela Oliveira Castro Poncinelli, Aron Seixas Terra Rodrigues, Laise Fazol do Couto, Silvia Luciana Fávaro, Rita de Cássia Colman
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001