EFFECT OF THE DIFFERENT INFRARED LEVELS ON SOME PROPERTIES OF SAGE LEAVES

Original scientific paper

Authors

  • Selma Kayacan-Cakmakoglu Department of Food Engineering, Yıldız Technical University, Esenler, 34210 Istanbul, Turkey https://orcid.org/0000-0001-9498-1839
  • Ilker Atik Food Technology, Afyon Vocational School, Afyon Kocatepe Unıversity, Afyonkarahisar 03200, Turkey
  • Perihan Kubra Akman Department of Food Engineering, Yıldız Technical University, Esenler, 34210 Istanbul, Turkey
  • Ibrahim Doymaz Department of Chemical Engineering, Yıldız Technical University, Esenler, 34210 Istanbul, Turkey https://orcid.org/0000-0002-4429-6443
  • Osman Sagdıc Department of Food Engineering, Yıldız Technical University, Esenler, 34210 Istanbul, Turkey
  • Salih Karasu Department of Food Engineering, Yıldız Technical University, Esenler, 34210 Istanbul, Turkey https://orcid.org/0000-0002-2324-1865

DOI:

https://doi.org/10.2298/CICEQ220429030K

Keywords:

infrared drying, rosmarinic acid, phenolic profile, antibacterial activity, color

Abstract

This study aims to investigate the effect of different infrared powers (IP) (38 W, 50 W, 62 W, 74 W, and 88 W) on drying kinetics, total phenolic content (TPC) and individual phenolics, antioxidant activity (AA) and antibacterial activity, and color quality of sage leaves. IP level significantly affected (p<0.05) drying kinetics, bioactive contents, and color quality of sage leaves. Higher TPC and AA were obtained from the sample dried at 88 W. Rosmarinic acid, caffeic acid, gallic acid, and luteolin were found as major phenolic compounds, and their higher levels were obtained from the samples dried at an IP level of 88 W. All samples showed antibacterial activity on test pathogens. A higher correlation was observed between TPC, rosmarinic acid level, and antibacterial activity (P>0.80). This study suggested that sage leaves should be dried at 88 W regarding lower drying times and color changes, lower phenolic degradation, and higher antibacterial activity.

References

N.E. Durling, O.J. Catchpole, J.B. Grey, R.F. Webby, K.A. Mitchell, L. Yeap Foo, N.B. Perry, Food Chem. 101 (2007) 1417—1424. https://doi.org/10.1016/j.foodchem.2006.03.050.

A.A. Hassanain, Res. Agric. Eng. 57 (2011) 19—29. https://doi.org/10.17221/14/2010-RAE.

B. Pavlic, N. Teslic, A. Vidaković, S. Vidović, A. Velićanski, A. Versari, R. Radosavljević, Z. Zeković, Ind. Crops Prod. 107 (2017) 81—89. https://doi.org/10.1016/j.indcrop.2017.05.031.

G. Topcu, J. Nat. Prod. 69 (2006) 482—487. https://doi.org/10.1021/np0600402.

M. Bianchin, D. Pereira, J.F. Almeida, C. Moura, R.S. Pinheiro, L.F.S. Heldt, C.W.I. Haminiuk, S.T. Carpes, Molecules 25 (2020) 1—10. https://doi.org/10.3390/molecules25215160.

K. Sehnal, B. Hosnedlova, M. Docekalova, M. Stankova, D. Uhlirova, Z. Tothova, M. Kepin-ska, H. Milnerowicz, C. Fernandez, B. Ruttkay-Nedecky, H.V. Nguyen, A. Ofomaja, J. Sochor, R. Kizek, Nanomaterials 9 (2019) 1—26. https://doi.org/10.3390/nano9111550.

S. Francik, R. Francik, U. Sadowska, B. Bystrowska, A. Zawiślak, A. Knapczyk, A. Nzeyimana, Materials 13 (2020) 1—15. https://doi.org/10.3390/ma13245811.

M. Ben Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán. Ind. Crops Prod. 54 (2014) 78—85. http://dx.doi.org/10.1016/j.indcrop.2014.01.001.

Y.Y. Jiang, L. Zhang, H.P. Vasantha Rupasinghe, Biomed. Pharmacother. 85 (2017) 57—67. https://doi.org/10.1016/j.biopha.2016.11.113.

A. Salević, C. Prieto, L. Cabedo, V. Nedović, J.M. Lagaron, Nanomaterials 9 (2019) 1—17. https://doi.org/10.3390/nano9020270.

M. Keshavarz, A. Bidmeshkipour, A. Mostafaie, K. Mansouri, H. Mohammadi-Motlagh, Cell J. 12 (2011) 477—482. https://www.sid.ir/FileServer/JE/82320110407.pdf.

D. Altindal, N. Altindal, in Essential Oils in Food Preservation, Flavor and Safety, V.R Preedy Ed., Academic Press, San Diego, (2016) 715—721. https://doi.org/10.1016/B978-0-12-416641-7.00081-X.

M.A.M. Kandil, R.M. Sabry, S.S. Ahmed, RJPBCS. 7(4) (2016) 1112—1123. ISSN: 0975-8585.

I. Hamrouni-Sellami, F.Z. Rahali, I.B. Rebey, S. Bourgou, F. Limam, I. Marzouk, Food Bioprocess. Technol. 6 (2013) 806—817. https://doi.org/10.1007/s11947-012-0877-7.

A. Wojdyło, A. Figiel, P. Legua, K. Lech, Á.A. Carbonell-Barrachina, F. Hernández, Food Chem. 207 (2016) 170—179. https://doi.org/10.1016/j.foodchem.2016.03.099.

I. Doymaz, A.S. Kipcak, S. Piskin, Czech J. Food Sci. 33 (2015) 83—90. https://doi.org/10.17221/423/2014-CJFS.

İ. Doymaz, S. Karasu, Qual. Assur. Saf. Crops Foods 10 (2018) 269—276. https://doi.org/10.3920/QAS2017.1257.

U. Sadowska, A. Kopec, L. Kourimska, L. Zarubova, P. Kloucek, J. Food Process. Preserv. 41 (2017) 1—11. https://doi.org/10.1111/jfpp.13286.

M. Jebri, H. Desmorieux, A. Maaloul, E. Saadaoui, M. Romdhane, Heat Mass Transfer 55 (2019) 1143—1153. https://doi.org/10.1007/s00231-018-2498-9.

K.Ç. Selvi, A. Kabutey, G.A.K. Gürdil, D. Herak, S. Kurhan, P. Kloucek, Plants 9 (2020) 1—13. https://doi.org/10.3390/plants9020236.

V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16 (1965) 144—158. http://www.ajevonline.org/content/16/3/144.full.pdf+html.

X. Si, Q. Chen, J. Bi, J. Yi, L. Zhou, X. Wu, J. Food Process Eng. 16 (2016) 157—164. https://doi.org/10.1111/jfpe.12230.

S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, LWT-Food Sci. Technol. 118 (2020) 108830. https://doi.org/10.1016/j.lwt.2019.108830.

E.F. De Andrade, D. Carpiné, J.L.A. Dagostin, A. Barison, A.L. Rüdiger, G.I.B. de Muñiz, M.L. Masson, Eur. Food Res. Technol. 243 (2017) 2155—2161. https://doi.org/10.1007/s00217-017-2918-y.

J. Waewsak, S. Chindaruksa, C. Punlek, Sci. Technol. 11 (2006) 14—20. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/41556/34343.

A. Sarimeseli, M. Yuceer, Chem. Process Eng. 36 (2015) 425—436. DOI:10.1515/cpe-2015-0030

E. Aidani, M. Hadadkhodaparast, M. Kashaninejad, Food Sci. Nutr. 5 (2016) 596—601. https://doi.org/10.1002/fsn3.435.

J. López, K.S. Ah-Hen, A. Vega- Gálvez, A. Morales, P. García -Segovia, E. Uribe, (2017). J. Food Process Eng. 40 (2017) 1—11. https://doi.org/10.1111/jfpe.12511.

V.V. Milevskaya, Z.A. Temerdashev, T.S. Butyl’skaya, N.V. Kiseleva, J. Anal. Chem. 72 (2017) 342—348. https://doi.org/10.1134/S1061934817030091.

V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, J. Agric. Food Chem. 50 (2002) 3010—3014. https://doi.org/10.1021/jf0115589.

Y. Choi, S.M. Lee, J. Chun, H.B. Lee, J. Lee, Food Chem. 99 (2006) 381—387. https://doi.org/10.1016/j.foodchem.2005.08.004.

N. Adak, N. Heybeli, C. Ertekin, C. Food Chem. 219 (2017) 109—116. https://doi.org/10.1016/j.foodchem.2016.09.103.

H. Xu, M. Wu, Y. Wang, W. Wei, D. Sun, D. Li, Z. Zheng, F. Gao, Foods. 11 (2022) 1—27. https://doi.org/10.3390/foods11152240.

X. Wu, M. Zhang, Z. Li, LWT-Food Sci. Technol. 111 (2019) 790—798. https://doi.org/10.1016/j.lwt.2019.05.108.

M. Marino, C. Bersani, G. Comi, Int. J. Food Microbiol. 67 (2001) 187—195. https://doi.org/10.1016/S0168-1605(01)00447-0.

E.A. Palombo, S.J. Semple, J. Ethnopharmacol. 77 (2001) 151—157. https://doi.org/10.1016/S0378-8741(01)00290-2.

I. Generalić Mekinić, I. Ljubenkov, S.S. Možina, H. Abramović, V. Šimat, A. Katalinić, T. Novak, D. Skroza, Ind. Crop. Prod. 141 (2019) 111741. https://doi.org/10.1016/j.indcrop.2019.111741.

A. Matkowski, Biotechnol. Adv. 26 (2008) 548—560. https://doi.org/10.1016/j.biotechadv.2008.07.001

A. Klancnik, S. Piskernik, B. Jersek, S.S Mozina, J. Microbiol. Methods. 81 (2010) 121—126. https://doi.org/10.1016/j.mimet.2010.02.004.

A. Mohammadi, S. Rafiee, Z. Emam-djomeh, A. Keyhani, World J. Agric. Sci. 4 (2008) 376—383. http://www.idosi.org/wjas/wjas4(3)/15.pdf.

V. Lavelli, B. Zanoni, A. Zaniboni, Food Chem. 104 (2007) 1705—1711. https://doi.org/10.1016/j.foodchem.2007.03.033.

Z.S. Cserhalmi, Á. Sass-Kiss, M. Tóth-Markus, N. Lechner, Innovative Food Sci. Emerging Technol. 7(2006) 49—54. https://doi.org/10.1016/j.ifset.2005.07.001.

S.H. Ghaboos, S.M. Ardabili, M. Kashaninejad, G. Asadi, M. Aalami, J. Food Sci. Technol. 53 (2016) 2380—2388. https://doi.org/10.1007/s13197-016-2212-1.

Downloads

Published

30.11.2022 — Updated on 06.04.2023

Issue

Section

Articles

How to Cite

EFFECT OF THE DIFFERENT INFRARED LEVELS ON SOME PROPERTIES OF SAGE LEAVES: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(3), 235-242. https://doi.org/10.2298/CICEQ220429030K

Similar Articles

61-62 of 62

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)