HEAT TRANSFER STUDIES IN A PLATE HEAT EXCHANGER USING Fe2O3-WATER-ENGINE OIL NANOFLUID

Original scientific paper

Authors

  • Periasamy Manikandan Srinivasan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India https://orcid.org/0000-0003-0506-7282
  • Nesakumar Dharmakkan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Maha Devaa Sri Vishnu Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Hari Prasath Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Ramaraj Gokul Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Ganeshan Thiyagarajan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Govindasamy Sivasubramani Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Balachandran Moulidharan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India

DOI:

https://doi.org/10.2298/CICEQ220430029S

Keywords:

engine oil, Fe2O3, heat transfer, nanofluid, plate heat exchanger, water

Abstract

Improving the heat transfer performance of conventional fluid creates significant energy savings in process Industries. In this aspect, an experimental study was performed to evaluate the heat transfer performance of Fe2O3-water (W)-engine oil (EO) nanofluid at different concentrations and hot fluid inlet temperatures in a plate heat exchanger. Experiments were conducted by mixing Fe2O3 nanoparticles (45 nm) in a W-EO mixture base fluid with volume fractions of 5% EO + 95% W and 10% EO +90% W. The main aim of the present study was to assess the impacts of nanoparticle volume fraction and hot fluid inlet temperature variations on the heat transfer performance of the prepared nanofluid. The convective heat transfer coefficient, Reynolds, Prandtl, and Nusselt numbers were determined based on the experimental results. The result shows that at the hot fluid inlet temperature of 75 °C, the increase in Nusselt number and convective heat transfer coefficient are optimum at 0.9 vol. % nanoparticle for both the base fluid mixtures. The increase in heat transfer coefficient is because of the Brownian motion (increasing thermal conductivity) effect, motion caused by the temperature gradient (Thermo-phoretic), and motion due to concentration gradient (Osmophoretic). If the volume fraction of the nanoparticle increases, then the Reynolds number increment is higher than the Prandtl number decrement, which augments the Nusselt number and convective heat transfer coefficient.

References

A. H. Elsheikh, H. N. Panchal, S. Sengottain, N. Alsaleh, M. Ahmadein, Water. 14 (2022) 1-13. https://doi.org/10.3390/w14060852

B. Mehta, D. Subhedar, H. Panchal H, Z. Sai, J. Mol. Liq. 364 (2022) 120034 https://doi.org/10.1016/j.molliq.2022.120034

M. Vaka, R. Walvekar, A.K. Rasheed, M. Khalid, H. Panchal, IEEE Access. 8 (2020) 58227-58247. https://doi.org/10.1109/ACCESS.2019.2950384

R. Walvekar, Y. Y. Chen, R. Saputra, M. Khalid, H. Panchal, D. Chandran, N. M. Mubarak, K. K. Sadasivuni, J. Taiwan Inst. Chem. Eng. 128 (2021) 314-326. https://doi.org/10.1016/j.jtice.2021.06.017

S. Chandrakant, H. Panchal, K. K. Sadasivuni, Energy Sources, Part A, 43 (2021) https://doi.org/10.1080/15567036.2021.1900457

S.U.S. Choi, S. Lee, S. Li, J. A. Eastman, J. Heat Transfer 121 (1999) 280-289.

https://doi.org/10.1115/1.2825978

M. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038-1054. https://doi.org/10.1016/j.rser.2010.11.035.

M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, Int. J. Heat Fluid Flow 30 (2009) 691-699. https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005.

D. Huang, Z. Wu, B. Sunden, Int. J. Heat Mass Transfer 89 (2015) 620-626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.

T. Mare, S. Halelfadl, S. Duret, P. Estelle, Exp. Therm. Fluid Sci. 35 (2011) 1535-1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.

Y.H. Kwon, D. Kim, L. Chengguo, J.K. Lee, J. Nanosci. Nanotechnol. 11 (2011) 5769-5774. https://doi.org/10.1166/jnn.2011.4399.

X. Wang, X. Xu, J. Thermophys. Heat Transfer 13 (1999) 474-480.

https://doi.org/10.2514/2.6486

P.M. Srinivasan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341-352. https://doi.org/10.2298/HEMIND210520031S

S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. (2022) Article in Press https://doi.org/10.2298/CICEQ210125021M.

M. Unverdi, Y. Islamohlu, Therm. Sci. 21 (2017) 2379-2391. https://doi.org/10.2298/TSCI151110097U

M.M. Sarafraz, Chem. Biochem. Eng Q. 30 (2017) 489-500. https://doi.org/10.15255/CABEQ.2015.2203

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.

H. Panchal, R.Sathyamoorthy, A.E. Kabeel, A. El-Agouz, D. Rufus, T. Arunkumar, A. Muthu Manohar, D. Prince Winston, A. Sharma, N. Thakar, K. K. Sadasivuni, J. Therm. Anal. Calorim. 138 (2019) 3175-3182. https://doi.org/10.1007/s10973-019-08346-x

R. Vidhya, T. Balakrishnan, B. Suresh Kumar, R. Palanisamy, H. Panchal, L. Angulo-Cabanillas, S. Shaik, B. Saleh, I. M. Alarifi, J. Therm. Anal. Calorim.. (2022) 1-11. https://doi.org/10.1155/2022/6596028

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P.

S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317-322.

https://doi.org/10.3311/PPch.11676

N. Kumar, S.S. Sonawane, S.H. Sonawane, Int. Commun. Heat Mass Transfer 90 (2018) 1-10. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.001

A. Amir, S.A.A. Mirjalily, N. Nasirizadeh, H. Kargarsharifabad, Int. Commun. Heat Mass Transfer 117 (2020) 1-8. https://doi.org/10.1016/j.icheatmasstransfer.2020.104603

M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327

H.R. Goshayeshi, M. Goodarzi, M. Dahari, Exp. Therm. Fluid Sci. 68 (2015) 663-668. https://doi.org/10.1016/j.expthermflusci.2015.07.014

L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 44 (2013) 7-14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014

L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 49 (2013) 17-24. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026

R.S. Khedkar, A. Saikiram, S.S. Sonawane, K. Wasewar, S.S. Umre, Procedia Eng. 51 (2013) 342-346. https://doi.org/10.1016/j.proeng.2013.01.047

W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf., A 355 (2010) 109-113. . https://doi.org/10.1016/j.colsurfa.2009.11.044

S.Z. Guo, Y. Li, J.S. Jiang, H.Q. Xie, Nanoscale Res. Lett. 5 (2010) 1222-1227. https://doi.org/10.1007/s11671-010-9630-1

Y. Vermahmoudia, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, J. Theor. Appl. Mech. 44 (2014) 32-41. https://doi.org/10.1016/j.euromechflu.2013.10.002

T.S. Mohsen, K. Arash, J. Mol. Liq. 283 (2019) 660-666. https://doi.org/10.1016/j.molliq.2019.03.140

Y.Y. Wu, W.C. Tsui, T.C. Liu, Wear 262 (2007) 819-825. https://doi.org/10.1016/j.wear.2006.08.021

Downloads

Published

28.11.2022 — Updated on 06.04.2023

Issue

Section

Articles

How to Cite

HEAT TRANSFER STUDIES IN A PLATE HEAT EXCHANGER USING Fe2O3-WATER-ENGINE OIL NANOFLUID: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(3), 225-233. https://doi.org/10.2298/CICEQ220430029S

Similar Articles

1-10 of 76

You may also start an advanced similarity search for this article.