THERMODYNAMIC MODELING OF GAS SOLUBILITY IN IONIC LIQUIDS USING EQUATIONS OF STATE
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ220417028CKeywords:
ionic liquids, equations of state, associating, aspen plus, thermodynamic modelingAbstract
This work aimed at the thermodynamic modeling of gas solubility in ionic liquids (ILs) using the Soave-Redlich-Kwong (SRK), cubic-plus-association (CPA), and perturbed-chain statistical associating fluid theory (PC-SAFT) equations of state. Wherefore, the routines were developed for the parameterization of ILs. Then, the ILs were implemented in the Aspen plus simulator to evaluate the equations of state and explore the phase equilibrium data with the predictive equations and the correlation of the binary interaction parameter. Hence, it was verified the correlation of the density and speed of sound curves presented limitations to correcting the slope of the curves of pure ILs. Nonetheless, the PC-SAFT with the 4C associative scheme demonstrated a better fit for the thermophysical properties. As for the prediction of phase equilibrium for the [EMIM][TfO], the PC-SAFT with the 2B scheme showed a better fit with CO2, while the CPA with the 2B scheme presented the best result for H2S. For [OMIM][NTf2], the PC-SAFT with the 1A scheme showed better results with CO2, and the CPA with the 2B scheme showed the lowest deviation with H2S.
References
I. Iliuta, F. larachi, Int. J. Greenhouse Gas Control 79 (2018) 1—13. https://doi.org/10.1016/j.ijggc.2018.09.016.
J. Carrol, Natural Gas Hydrates: A Guide for Engineers, 4. Ed., Gulf Professional Publishing (2020) p. 377. ISBN: 978-0-12-821771-9.
A. Haghtalab, A. Afsharpour, Fluid Phase Equilib. 406 (2015) 10—20. https://doi.org/10.1016/j.fluid.2015.08.001.
J. Haider, S. Saeed, M.A. Qyyum, B. Kazmi, R. Ahmad, A. Muhammad, M. Lee, Renewable Sustainable Energy Rev. 123 (2020) 109771. https://doi.org/10.1016/j.rser.2020.109771.
R. Santiago, J. Lemus, A.X. Outomuro, J. Bedia, J. Palomar, Sep. Purif. Technol. 233 (2020) 116050. https://doi.org/10.1016/j.seppur.2019.116050.
G. Yu, C. Dai, L. Wu, Z. Lei, Energy Fuels 31 (2017) 1429—1439. https://doi.org/10.1016/j.gee.2020.10.022.
S.E. Sanni, O. Agboola, O. Fagbiele, E.O. Yusuf, M.E. Emetere, Egypt. J. Pet. 29 (2020) 83—94. https://doi.org/10.1016/j.ejpe.2019.11.003.
T.E. Akinola, E. Oko, M. Wang, Fuel 236 (2019) 135—146. https://doi.org/10.1016/j.fuel.2018.08.152.
K. Huang, X.-M. Zhang, Y. Xu, Y.-T. Wu, X.-B. Hu, AlChE J. 60 (2014) 4232—4240. https://doi.org/10.1002/aic.14634.
S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 117 (2017) 6755—6833. https://doi.org/10.1021/acs.chemrev.6b00509.
S.K. Singh, Int. J. Biol. Macromol. 132 (2019) 265—277. https://doi.org/10.1016/j.ijbiomac.2019.03.182.
M. Freemantle, Chem. Eng. News 78 (2000) 37—50. https://doi.org/10.1021/cen-v078n020.p037.
A.H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseini-Jenab, V. Taghikhani, J. Phys. Chem. B 116 (2012) 2758—2774. https://doi.org/10.1021/jp2075572.
M. Nematpour, A.H. Jalili, C. Ghotbi, D. Rashtchian, J. Nat. Gas Sci. Eng. 30 (2016) 583—591. https://doi.org/10.1016/j.jngse.2016.02.006.
A.K. Jana, Process simulation and control using AspenTM, PHI Learning Private Limited, (2009) p. 317. ISBN: 978-81-203-3659-9.
A.M. Law, W. D. Kelton, Simulation modeling & analysis, 2. ed., McGraw-Hill International editions, (1991) p. 672. ISBN-13: 978-0070366985.
A.I. Papadopoulos, I. Tsivintzelis, P. Linke, P. Seferlis, in Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier (2018) https://doi.org/10.1016/B978-0-12-409547-2.14342-2.
L.F. Cardona, J.O. Valderrama, J. Mol. Liq. 317 (2020) 113926. https://doi.org/10.1016/j.molliq.2020.113926.
G. Soave, Chem. Eng. Sci. 27 (1972) 1197—1203. https://doi.org/10.1016/0009-2509(72)80096-4.
M.S. Graboski, T.E. Daubert, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 300—306. https://doi.org/10.1021/i260070a022.
P.M. Mathias, Ind. Eng. Chem. Process Des. Dev. 22 (1983) 385—391. https://doi.org/10.1021/i200022a008.
G.M. Kontogeorgis, E.C. Voutsas, I. V. Yakoumis, D.P. Tassios, Ind. Eng. Chem. Res. 35 (1996) 4310—4318. https://doi.org/10.1021/ie9600203.
G.M. Kontogeorgis, M.L. Michelsen, G.K. Folas, S. Derawi, N. Von Solms, E.H. Stenby, Ind. Eng. Chem. Res. 45 (2006) 4855—4868. https://doi.org/10.1021/ie051305v.
S. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284—2294. https://doi.org/10.1021/ie00107a014.
J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244—1260. https://doi.org/10.1021/ie0003887.
S.F. Baygi, H. Pahlavanzadeh, Chem. Eng. Res. Des. 93 (2015) 789—799. https://doi.org/10.1016/j.cherd.2014.07.017.
J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41 (2002) 5510—5515. https://doi.org/10.1021/ie010954d.
W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709—1721. https://doi.org/10.1021/ie00104a021.
J. Gross, O. Spuhl, F. Tumakaka, G. Sadowski, Ind. Eng. Chem. Res. 42 (2003) 1266—1274. https://doi.org/10.1021/ie020509y.
M. Loreno, R.A. Reis, S. Mattedi, M.L.L. Paredes, Fluid Phase Equilib. 479 (2019) 85—98. https://doi.org/10.1016/j.fluid.2018.09.010.
E. Vercher, A.V. Orchillés, P.J. Miguel, A. Martínez-
Andreu, J. Chem. Eng. Data 52 (2007) 1468—1482. https://doi.org/10.1021/je7001804.
B-C. Lee, Korean J. Chem. Eng. 54 (2016) 213—222. https://doi.org/10.9713/kcer.2016.54.2.213.
E. Zorębski, M. Geppert-Rybczńska, M. Zorębski, J. Phys. Chem. B 117 (2013) 3867—3876. https://doi.org/10.1021/jp400662w.
J. Kennedy, R. Eberhart, Proc. ICNN’95 Int. Conf. N. Net. (1995) 1942—1948. https://doi.org/10.1109/ICNN.1995.488968.
J.A. Nelder, R. Mead, Comp. J. 7 (1965) 308—313. https://doi.org/10.1093/comjnl/7.4.308.
R.J. Topliss, D. Dimitrelis, J. M. Prausnitz, Comput. Chem. Eng. 12 (1988) 483—489. https://doi.org/10.1016/0098-1354(88)85067-1.
Aspen plus 2019 - Aspen Technology Inc. – USA.
I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, AlChE J. 56 (2010) 2965—2982. https://doi.org/10.1002/aic.12207.
L. Ruffine, P. Mougin, A. Barreau, Ind. Eng. Chem. Res. 45 (2006) 7688—7699. https://doi.org/10.1021/ie0603417.
X. Tang, J. Gross, Fluid Phase Equilib. 293 (2010) 11—21. https://doi.org/10.1016/j.fluid.2010.02.004.
Nist, NIST Livro de Química na Web, https://webbook.nist.gov/chemistry/ [Accessed 09 august 2021].
G.M. Kontogeorgis, G.K. Folas, Thermodynamic Models for Industrial Applications, 1. Ed., John Wiley & Sons Inc(2010) p. 710. ISBN: 978-0-470-69726-9
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Lucas Oliveira Cardoso, Bruno Santos Conceição, Márcio Luis Lyra Paredes, Silvana Mattedi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers PROC. 88887.633974/2021-00 -
Fundação de Amparo à Pesquisa do Estado da Bahia
Grant numbers APP0075/2016 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 303089/2019-9