THERMODYNAMIC MODELING OF GAS SOLUBILITY IN IONIC LIQUIDS USING EQUATIONS OF STATE

Original scientific paper

Authors

  • Lucas Oliveira Cardoso Chemical Engineering Graduate Program (UFBA/UNIFACS), Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
  • Bruno Santos Conceição Chemical Engineering Graduate Program (UFBA/UNIFACS), Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
  • Márcio Luis Lyra Paredes Chemical Engineering Graduate Program, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
  • Silvana Mattedi https://orcid.org/0000-0003-4816-7494

DOI:

https://doi.org/10.2298/CICEQ220417028C

Keywords:

ionic liquids, equations of state, associating, aspen plus, thermodynamic modeling

Abstract

This work aimed at the thermodynamic modeling of gas solubility in ionic liquids (ILs) using the Soave-Redlich-Kwong (SRK), cubic-plus-association (CPA), and perturbed-chain statistical associating fluid theory (PC-SAFT) equations of state. Wherefore, the routines were developed for the parameterization of ILs. Then, the ILs were implemented in the Aspen plus simulator to evaluate the equations of state and explore the phase equilibrium data with the predictive equations and the correlation of the binary interaction parameter. Hence, it was verified the correlation of the density and speed of sound curves presented limitations to correcting the slope of the curves of pure ILs. Nonetheless, the PC-SAFT with the 4C associative scheme demonstrated a better fit for the thermophysical properties. As for the prediction of phase equilibrium for the [EMIM][TfO], the PC-SAFT with the 2B scheme showed a better fit with CO2, while the CPA with the 2B scheme presented the best result for H2S. For [OMIM][NTf2], the PC-SAFT with the 1A scheme showed better results with CO2, and the CPA with the 2B scheme showed the lowest deviation with H2S.

References

I. Iliuta, F. larachi, Int. J. Greenhouse Gas Control 79 (2018) 1—13. https://doi.org/10.1016/j.ijggc.2018.09.016.

J. Carrol, Natural Gas Hydrates: A Guide for Engineers, 4. Ed., Gulf Professional Publishing (2020) p. 377. ISBN: 978-0-12-821771-9.

A. Haghtalab, A. Afsharpour, Fluid Phase Equilib. 406 (2015) 10—20. https://doi.org/10.1016/j.fluid.2015.08.001.

J. Haider, S. Saeed, M.A. Qyyum, B. Kazmi, R. Ahmad, A. Muhammad, M. Lee, Renewable Sustainable Energy Rev. 123 (2020) 109771. https://doi.org/10.1016/j.rser.2020.109771.

R. Santiago, J. Lemus, A.X. Outomuro, J. Bedia, J. Palomar, Sep. Purif. Technol. 233 (2020) 116050. https://doi.org/10.1016/j.seppur.2019.116050.

G. Yu, C. Dai, L. Wu, Z. Lei, Energy Fuels 31 (2017) 1429—1439. https://doi.org/10.1016/j.gee.2020.10.022.

S.E. Sanni, O. Agboola, O. Fagbiele, E.O. Yusuf, M.E. Emetere, Egypt. J. Pet. 29 (2020) 83—94. https://doi.org/10.1016/j.ejpe.2019.11.003.

T.E. Akinola, E. Oko, M. Wang, Fuel 236 (2019) 135—146. https://doi.org/10.1016/j.fuel.2018.08.152.

K. Huang, X.-M. Zhang, Y. Xu, Y.-T. Wu, X.-B. Hu, AlChE J. 60 (2014) 4232—4240. https://doi.org/10.1002/aic.14634.

S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 117 (2017) 6755—6833. https://doi.org/10.1021/acs.chemrev.6b00509.

S.K. Singh, Int. J. Biol. Macromol. 132 (2019) 265—277. https://doi.org/10.1016/j.ijbiomac.2019.03.182.

M. Freemantle, Chem. Eng. News 78 (2000) 37—50. https://doi.org/10.1021/cen-v078n020.p037.

A.H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseini-Jenab, V. Taghikhani, J. Phys. Chem. B 116 (2012) 2758—2774. https://doi.org/10.1021/jp2075572.

M. Nematpour, A.H. Jalili, C. Ghotbi, D. Rashtchian, J. Nat. Gas Sci. Eng. 30 (2016) 583—591. https://doi.org/10.1016/j.jngse.2016.02.006.

A.K. Jana, Process simulation and control using AspenTM, PHI Learning Private Limited, (2009) p. 317. ISBN: 978-81-203-3659-9.

A.M. Law, W. D. Kelton, Simulation modeling & analysis, 2. ed., McGraw-Hill International editions, (1991) p. 672. ISBN-13: 978-0070366985.

A.I. Papadopoulos, I. Tsivintzelis, P. Linke, P. Seferlis, in Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier (2018) https://doi.org/10.1016/B978-0-12-409547-2.14342-2.

L.F. Cardona, J.O. Valderrama, J. Mol. Liq. 317 (2020) 113926. https://doi.org/10.1016/j.molliq.2020.113926.

G. Soave, Chem. Eng. Sci. 27 (1972) 1197—1203. https://doi.org/10.1016/0009-2509(72)80096-4.

M.S. Graboski, T.E. Daubert, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 300—306. https://doi.org/10.1021/i260070a022.

P.M. Mathias, Ind. Eng. Chem. Process Des. Dev. 22 (1983) 385—391. https://doi.org/10.1021/i200022a008.

G.M. Kontogeorgis, E.C. Voutsas, I. V. Yakoumis, D.P. Tassios, Ind. Eng. Chem. Res. 35 (1996) 4310—4318. https://doi.org/10.1021/ie9600203.

G.M. Kontogeorgis, M.L. Michelsen, G.K. Folas, S. Derawi, N. Von Solms, E.H. Stenby, Ind. Eng. Chem. Res. 45 (2006) 4855—4868. https://doi.org/10.1021/ie051305v.

S. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284—2294. https://doi.org/10.1021/ie00107a014.

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244—1260. https://doi.org/10.1021/ie0003887.

S.F. Baygi, H. Pahlavanzadeh, Chem. Eng. Res. Des. 93 (2015) 789—799. https://doi.org/10.1016/j.cherd.2014.07.017.

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41 (2002) 5510—5515. https://doi.org/10.1021/ie010954d.

W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709—1721. https://doi.org/10.1021/ie00104a021.

J. Gross, O. Spuhl, F. Tumakaka, G. Sadowski, Ind. Eng. Chem. Res. 42 (2003) 1266—1274. https://doi.org/10.1021/ie020509y.

M. Loreno, R.A. Reis, S. Mattedi, M.L.L. Paredes, Fluid Phase Equilib. 479 (2019) 85—98. https://doi.org/10.1016/j.fluid.2018.09.010.

E. Vercher, A.V. Orchillés, P.J. Miguel, A. Martínez-

Andreu, J. Chem. Eng. Data 52 (2007) 1468—1482. https://doi.org/10.1021/je7001804.

B-C. Lee, Korean J. Chem. Eng. 54 (2016) 213—222. https://doi.org/10.9713/kcer.2016.54.2.213.

E. Zorębski, M. Geppert-Rybczńska, M. Zorębski, J. Phys. Chem. B 117 (2013) 3867—3876. https://doi.org/10.1021/jp400662w.

J. Kennedy, R. Eberhart, Proc. ICNN’95 Int. Conf. N. Net. (1995) 1942—1948. https://doi.org/10.1109/ICNN.1995.488968.

J.A. Nelder, R. Mead, Comp. J. 7 (1965) 308—313. https://doi.org/10.1093/comjnl/7.4.308.

R.J. Topliss, D. Dimitrelis, J. M. Prausnitz, Comput. Chem. Eng. 12 (1988) 483—489. https://doi.org/10.1016/0098-1354(88)85067-1.

Aspen plus 2019 - Aspen Technology Inc. – USA.

I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, AlChE J. 56 (2010) 2965—2982. https://doi.org/10.1002/aic.12207.

L. Ruffine, P. Mougin, A. Barreau, Ind. Eng. Chem. Res. 45 (2006) 7688—7699. https://doi.org/10.1021/ie0603417.

X. Tang, J. Gross, Fluid Phase Equilib. 293 (2010) 11—21. https://doi.org/10.1016/j.fluid.2010.02.004.

Nist, NIST Livro de Química na Web, https://webbook.nist.gov/chemistry/ [Accessed 09 august 2021].

G.M. Kontogeorgis, G.K. Folas, Thermodynamic Models for Industrial Applications, 1. Ed., John Wiley & Sons Inc(2010) p. 710. ISBN: 978-0-470-69726-9

Published

07.11.2022 — Updated on 06.04.2023

Issue

Section

Articles

How to Cite

THERMODYNAMIC MODELING OF GAS SOLUBILITY IN IONIC LIQUIDS USING EQUATIONS OF STATE: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(3), 209-224. https://doi.org/10.2298/CICEQ220417028C

Similar Articles

11-20 of 37

You may also start an advanced similarity search for this article.