ENHANCING MRR AND ACCURACY WITH MAGNETIZED GRAPHITE TOOL IN ELECTROCHEMICAL MICROMACHINING OF COPPER

Original scientific paper

Authors

  • Venugopal Palaniswamy Department of Mechanical Engineering, Muthayammal College of Engineering, Rasipuram, Namakkal (Dt), Tamil Nadu, India-637 408
  • Kaliappan Seeniappan Department of Mechanical Engineering, Velammal Institute of Technology, Tamil Nadu, Chennai-601204, India
  • Thanigaivelan Rajasekaran Department of Mechanical Engineering, AKT Memorial College of Engineering and Technology, Kallakurichi, Tamil Nadu, India-606 202 https://orcid.org/0000-0001-9514-9120
  • Natrayan Lakshmaiya Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Tamil Nadu, Chennai., India

DOI:

https://doi.org/10.2298/CICEQ220731027P

Keywords:

electrode, electromagnet, coating, machining rate, overcut

Abstract

Micro hole is the fundamental feature found in any device and its components. Hence this paper aims to produce the micro holes using electrochemical micromachining (EMM). The existing machining techniques in EMM for creating micro holes are associated with more overcut (OC). Hence, reducing OC and enhancing the machining rate (MR) is essential. This paper aspires to investigate the effect of the graphite electrode with magnetic force on the copper plate. Four different tools, namely the electromagnetic graphite tool (EMGT), permanent magnet graphite tool (PMGT), graphite tool, and stainless steel (SS) tool, are employed for these experiments. The major influencing factors are machining voltage in volts, duty cycle in % and electrolyte concentration in g/l was considered on MR and OC. The results revealed that EMGT, PMGT, and graphite electrodes produce MR of 106.4%, 74.6 % and 44.5 % over the SS tool at a parameter level of 23 g/l, 15 V, and 85%, respectively. Furthermore, graphite and EMGT electrodes resulted in 11.9% and 3.41% reduced OC, respectively, than the SS tool at parameter levels of 8 V, 95% and 28 g/l. Additionally, the scanning electron microscope (SEM) picture examination is conducted to identify the magnetic field effect on the work surface.

References

X. Wu, L. Li, N. He, M. Zhao, Z. Zhan, Int. J. Adv. Manuf. Technol. 79 (2015) 321—327. https://doi.org/10.1007/s00170-015-6828-5.

R. Thanigaivelan, R.M. Arunachalam, P. Drukpa, Int. J. Adv. Manuf. Technol. 61 (2012) 1185—1190. https://doi.org/10.1007/s00170-012-4093-4.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Appl. Chem. 91 (2018) 1805—1813. https://doi.org/10.1134/S1070427218110101.

J.R. Vinod Kumaar, R. Thanigaivelan, M. Soundarrajan, Mater. Manuf. Process. 37 (2022) 1526—1539. https://doi.org/10.1080/10426914.2022.2030874.

V. Sharma, P. Gupta, J. Ramkumar, J. Manuf. Process. 75 (2022) 110—124. https://doi.org/10.1016/j.jmapro.2022.01.006.

J. Bian, B. Ma, H. Ai, L. Qi, Materials 14 (2021) 2311. https://doi.org/10.3390/ma14092311.

S. Zhan, Y. Zhao, J. Mater. Process. Technol. 291 (2021) 117049. https://doi.org/10.1016/j.jmatprotec.2021.117049.

E. Rajkeerthi, P. Hariharan, N. Pradeep, Mater. Manuf. Process. 36 (2021) 488—500. https://doi.org/10.1080/10426914.2020.1843672.

S. Kunar, B. Bhattacharyya, J. Adv. Manuf. Syst. 20 (2021) 27—50. https://doi.org/10.1142/S0219686721500025.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Electrochem. 57 (2021) 172—182. https://doi.org/10.1134/S1023193521020117.

B. Mouliprasanth, P. Hariharan, Russ. J. Electrochem. 57 (2021) 197—213. https://doi.org/10.1134/S1023193521030095.

R. Shanmugam, M. Ramoni, G. Thangamani, M. Thangaraj, Metals 1 (2021) 778. https://doi.org/10.3390/met11050778.

G. Liu, H. Tong, Y. Li, H. Zhong, Precis. Eng. 72 (2021) 356—369. https://doi.org/10.1016/j.precisioneng.2021.05.009.

T. Yang, X. Fang, Y. Hang, Z. Xu, Y. Zeng, Int. J. Adv. Manuf. Technol. 116 (2021) 2651—2660. https://doi.org/10.1007/s00170-021-07556-8.

N. Pradeep, K.S. Sundaram, M. Pradeep Kumar, Mater. Manuf. Process. 35 (2020) 72—85. https://doi.org/10.1080/10426914.2019.1697445.

T.G. Arul, V. Perumal, R. Thanigaivelan, Chem. Ind. Chem. Eng. Q. 28 (2022) 247—253. https://doi.org/10.2298/CICEQ210501036A.

T.P. Gopinath, J. Prasanna, C.C. Sastry, S. Patil, Mater. Sci.-Pol. 39 (2021) 124—138. https://doi.org/10.2478/msp-2021—0013.

S. Palani, P. Lakshmanan, R. Kaliyamurthy, Mater. Manuf. Process. 35 (2020) 1860—1869. https://doi.org/10.1080/10426914.2020.1813888.

B. Liu, H. Zou, H. Luo, X. Yue, Micromachines 11 (2020) 118. https://doi.org/10.3390/mi11020118.

D.S. Patel, V. Agrawal, J. Ramkumar, V.K. Jain, G. Singh, J. Mater. Process. Technol. 282 (2020) 116644. https://doi.org/10.1016/j.jmatprotec.2020.116644.

M. Soundarrajan, R. Thanigaivelan, Mater. Manuf. Process. 35 (2020) 775—782. https://doi.org/10.1080/10426914.2020.1740252.

K.G. Saravanan, R. Thanigaivelan, M. Soundarrajan, Bull. Pol. Acad. Sci.:Tech. Sci. 69 (2021) e138816. https://doi.org/10.24425/bpasts.2020.135382.

A. Vats, A. Dvivedi, P. Kumar, Mater. Manuf. Process. 36 (2020) 677—692. https://doi.org/10.1080/10426914.2020.1866189.

J.R. Vinod Kumaar, R. Thanigaivelan, Mater. Manuf. Process. 35 (2020) 969—977. https://doi.org/10.1080/10426914.2020.1750630.

T. Geethapiriyan, A.A. Kumar, A.A. Raj, G. Kumarasamy, J.S. John, IOP Conf. Ser.: Mater. Sci. Eng. 912 (2020) p.032039. https://doi.org/10.1088/1757- 899X/912/3/032039.

S. Maniraj, R. Thanigaivelan, Mater. Manuf. Process. 34 (2019) 1494—1501. https://doi.org/10.1080/10426914.2019.1655153.

G. Liu, Y. Li, Q. Kong, H. Tong, H. Zhong, Precis. Eng. 52 (2018) 425—433. https://doi.org/10.1016/j.precisioneng.2018.02.003.

C. Guo, Y. Liu, Z. Wei, J. Niu, Recent Pat. Mech. Eng. 10 (2017) 51—59. https://doi.org/10.2174/2212797610666170208142044.

B. Mouliprasanth, P. Hariharan, Exp. Tech. 44 (2020) 259—273. https://doi.org/10.1007/s40799-019-00350-y.

R. Thanigaivelan, R. Senthilkumar, RM. Arunachalam, N. Natarajan, Surf. Eng. Appl. Electrochem. 53 (2017) 486—492. https://doi.org/10.3103/S1068375517050143.

Y. Wang, Y. Zeng, N. Qu, D. Zhu, Int. J. Adv. Manuf. Technol. 84 (2016) 851—859. https://doi.org/10.1007/s00170-015-7759-x.

W.A. Jorgensen, BM. Frome, C. Wallach, Eur. J. Surg.

(1994) 83—86. https://pubmed.ncbi.nlm.nih.gov/7531030/.

D.Y. Wu, JF. Li, B. Ren, ZQ. Tian, Chem. Soc. Rev. 37 (2008) 1025—1041. https://doi.org/10.1039/B707872M.

M. Iqbal, MM. Nauman, FU. Khan, PE. Abas, Q. Cheok, A. Iqbal, B. Aissa, Int. J. Energy Res. 45 (2020) 65—102. https://doi.org/10.1002/er.5643.

Y. Lu, Z. Tu, LA. Archer, Nat. Mater. 13 (2014) 961—969. https://doi.org/10.1038/nmat4041.

Y. Jin, N. Yang, X. Xu, Appl. Therm. Eng. 179 (2020) 115732. https://doi.org/10.1016/j.applthermaleng.2020.115732.

M. Wissler, J. Power Sources 156 (2006) 142—150. https://doi.org/10.1016/j.jpowsour.2006.02.064.

R.C. Cruz Gómez, L. Zavala Sansón, MA. Pinilla, Exp. Fluids 54 (2013) 1582. https://doi.org/10.1007/s00348-013-1582-7.

O. Sambalova, E. Billeter, O. Yildirim, A. Sterzi, D. Bleiner, A. Borgschulte, Int. J. Hydrogen Energy 46 (2021) 3346—3353. https://doi.org/10.1016/j.ijhydene.2020.10.210.

F. Bellucci, A. Di Martino, C. Liberti, J. Appl. Electrochem. 16 (1986) 15—22. https://doi.org/10.1007/BF01015979.

P. Natarajan, S.S Karibeeran, P.K. Murugesan, J Braz. Soc. Mech. Sci. Eng. 43 (2021). 507. https://doi.org/10.1007/s40430-021-03228-6.

Downloads

Published

19.10.2022 — Updated on 06.04.2023

Issue

Section

Articles

How to Cite

ENHANCING MRR AND ACCURACY WITH MAGNETIZED GRAPHITE TOOL IN ELECTROCHEMICAL MICROMACHINING OF COPPER: Original scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(3), 201-208. https://doi.org/10.2298/CICEQ220731027P

Similar Articles

41-46 of 46

You may also start an advanced similarity search for this article.