EFFECTS OF ADDING DIFFERENT QUANTITIES OF YEAST AND CHOKEBERRY JUICE ON FERMENTATION OF MEAD

Scientific paper

Authors

  • Maja Milijaš Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0001-5641-0349
  • Dragoljub Cvetković Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
  • Aleksandar Savić Faculty of Technology, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0002-2475-6764
  • Ana Velemir Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0003-2152-5183
  • Ljiljana Topalić-Trivunović Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0002-7988-0025
  • Saša Papuga Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0001-7400-1186

DOI:

https://doi.org/10.2298/CICEQ220325022M

Keywords:

antimicrobial activity, antioxidant activity, aronia, fermentation rate, netic model, mead

Abstract

Honey is a product of high nutritional value, used as a raw material for obtaining mead. However, adding fruit juices, including chokeberry juice, can improve mead quality. This paper aims to assess the effects that adding different quantities of chokeberry juice, with the variation of 3 amounts of inoculated yeast, has on the fermentation and physicochemical, antioxidant, and antimicrobial properties of mead. The parameters analyzed are the dry matter content, pH value, and content of volatile acids, ethanol and methanol, total phenols and flavonoids, FRAP, DPPH, and ABTS tests, and antimicrobial properties. The results obtained in this paper show that adding chokeberry juice improves the antioxidant properties of the final product and positively affects the course of mead fermentation, i.e., it has led to an increase in the maximum concentration of ethanol. Regarding the chemical composition of mead, there is no significant difference, except in the obtained ethanol content, which is the highest in samples with 10% of added chokeberry juice. Furthermore, the control sample showed the best antimicrobial activity, while the sample with 5% added chokeberry juice showed the weakest effect. Finally, the strongest effect was seen in the sample with 20% of added chokeberry juice.

References

Codex Standard for Honey 12-1981, Rev.1 (1987), Rev. 2 (2001)1 https://alimentosargentinos.magyp.gob.ar/contenido/marco/Codex_Alimentarius/normativa/codex/stan/CODEX_STAN_12.htm.

A. Wilczyńska, Polish J. Food Nutr. Sci. 60 (2010) 309—313. http://journal.pan.olsztyn.pl/pdf- 98274- 31027?filename=PHENOLIC%20CONTENT%20AND.pdf.

M. Bucekova, M. Buriova, L. Pekarik, V. Majtan, J. Majtan, Sci. Rep. 8 (2018) 1—9. https://doi.org/10.1038/s41598-018-27449-3.

D. Šmorgovičová, P. Nádaský, R. Tandlich, B.S. Wilhelmi, G. Cambray, Czech J. Food Sci. 30 (2012) 241—246. https://doi.org/10.17221/113/2011-CJFS.

G.I. Dezmirean, L.A. Mărghitaş, O. Bobiş, D.S. Dezmirean, V. Bonta, S. Erler, J. Agric. Food Chem. 60 (2012) 8028—8035. https://doi.org/doi.org/10.1021/jf3022282.

Y. Teramoto, R. Sato, S. Ueda, Afr. J. Biotechnol. 4 (2005) 160—163. https://doi.org/10.4314/AJB.V412.15072.

P. Vargas, R. Gulling, Making Wild Wines & Meads, Storey Publishing, United States (1999), p.122 ISBN: 1580171826.

A. Savić, A. Velemir, S. Papuga, M. Stojković, Foods Raw

Mater. 9 (2021) 146—152. https://doi.org/10.21603/2308-4057-2021-1-146-152.

A. Iglesias, A. Pascoal, A.B. Choupina, C.A. Carvalho, X. Feás, L.M. Estevinho, Molecules 19 (2014) 12577—12590. https://doi.org/10.3390/molecules190812577.

J. Šnebergová, H. Čižková, E. Neradová, B. Kapci, A. Rajchl, M. Voldřich, Czech J. Food Sci. 32 (2014) 25—30. https://doi.org/10.17221/540/2012-CJFS.

P. Denev, M. Číž, M. Kratchanova, D. Blazheva, Food Chem. 284 (2019) 108—117. https://doi.org/10.1016/j.foodchem.2019.01.108.

A. Bataraga, V. Valkovska, Key Eng. Mater. 850 (2020) 184-189. https://doi.org/10.4028/www.scientific.net/KEM.850.184.

M.J. Dodić, D.G. Vučurović, S.N. Dodić, J.A. Grahovac, S.D. Popov, N.M. Nedeljković, Appl. Energy 99 (2012) 192—197. https://doi.org/10.1016/j.apenergy.2012.05.016.

H.S. Lakićević, I.T. Karabegović, N.Č. Nikolić, M.G. Petrović, S.A. Đorđević, L.M. Lazić, Adv. Technol. 7 (2018) 11—18. https://doi.org/10.5937/SavTeh1802011L.

International Code of Oenological Practices. International Organisation of Vine and Wine, Paris (2021) https://www.oiv.int/sites/default/files/publication/2022-10/International%20Code%20of%20oenlogical%20practices.pdf.

M.L. Wang, Y.M. Choong, N.W. Su, M.H. Lee, J. Food Drug Anal. 11 (2003) 133—140. https://doi.org/10.38212/2224-6614.2710.

K. Wolfe, R.H. Liu, J. Agric. Food Chem. 51 (2003) 1676—1683. https://doi.org/10.1021/jf020782a.

A.A.L. Ordonez, J.D. Gomez, M.A. Vattuone, M.I. Isla, Food Chem. 97 (2006) 452—458. https://doi.org/10.1016/j.foodchem.2005.05.024.

W. Brand-Williams, M.E. Cuvelier, C. Barset, LWT – Food Sci. Technol. 28 (1995) 25—30. https://doi.org/10.1016/S0023-6438(95)80008-5.

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radical. Biol. Med. 26 (1999) 1231—1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239 (1996) 70—76. https://doi.org/10.1006/abio.1996.0292.

M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 6 (2016) 71—79. https://doi.org/10.1016/j.jpha.2015.11.005.

Determination of minimum inhibitory concentrations of antibacterial agents by agar dilution, EUCAST (2000). https://doi.org/10.1046/j.1469-0691.2000.00142.x.

N.N. Verović, MSc Thesis, University of Niš (in Serbian) (2018) https://www.pmf.ni.ac.rs/download/master/master_radovi_geografija/geografija_master_radovi/2018/2018-10-30-vn.pdf.

A.P. Pereira, A. Mendes-Ferreira, J.M. Oliveira, L.M. Estevinho, A. Mendes-Faia, Food Microbiol. 33 (2013) 114—123. https://doi.org/10.1016/j.fm.2012.09.006.

P. Sroka, P. Satora, Food Hydrocolloids 63 (2017) 233—239. https://doi.org/10.1016/j.foodhyd.2016.08.044.

A.M. Martínez, G.J. Vivas, M.C. Quicazán, Chem. Eng. Trans. 49 (2016) 19—24. https://doi.org/10.3303/CET1649004.

S.S.D. Mohammed, B. Yohanna, J.R. Wartu, N.L. Abubakar, S. Bello, Int. J. Biol. Sci. 10 (2018) 52—61. https://doi.org/10.5539/ijb.v10n3p52.

A. Mendes-Ferreira, F. Cosme, C. Barbosa, V. Falco, A. Inês, A. Mendes-Faia, Int. J. Food Microbiol. 144 (2010) 193—198. https://doi.org/10.1016/j.ijfoodmicro.2010.09.016.

P. Sroka, T. Tuszyński, Food Chem. 104 (2007) 1250—1257. https://doi.org/10.1016/j.foodchem.2007.01.046.

A.P. Pereira, A. Mendes-Ferreira, L.M. Estevinho, A. Mendes-Faia, J. Inst. Brew. 121 (2015) 405—410. https://doi.org/10.3390/microorganisms7100404.

J. Kawa-Rygielska, K. Adamenko, A.Z. Kucharska, K. Szatkowska, Food Chem. 283 (2019) 19—27. https://doi.org/10.1016/j.foodchem.2019.01.040.

H. Akalin, M. Bayram, R.E. Anli, J. Inst. Brew. 123 (2017) 167—174. https://doi.org/10.1002/jib.396.

M. Bely, I. Masneuf-Pomarède, D. Dubourdieui, J. Int. Sci. Vigne Vin 39 (2005) 191—197. https://doi.org/.20870/oeno-one.2005.39.4.886.

C.H. Chen, Y.L. Wu, D. Lo, M.C. Wu, J. Inst. Brew. 119 (2013) 303—308. https://doi.org/10.1002/jib.95.

A.P. Pereira, A. Mendes-Ferreira, J.M. Oliveira, L.M. Estevinho, A. Mendes-Faia, Food Microbiol. 33 (2013) 114—123. https://doi.org/10.1016/j.fm.2012.09.006.

K. Adamenko, J. Kawa-Rygielska, A.Z. Kucharska, N. Piórecki, Molecules 23 (2018) 2024—2037. https://doi.org/10.3390/molecules23082024.

T. Gomes, T. Dias, V. Cadavez, J., Verdial, J. S. Morais, E. Ramalhosa, L.M. Estevinho, Pol. J. Food Nutr. Sci. 65 (2015) 137—142. https://doi.org/10.1515/pjfns-2015-0006.

K.A. Roni, D. Kartika, H. Apriyadi, N. Herawati, J. Comput. Theor. Nanosci. 16 (2019) 5228—5232. https://doi.org/10.1166/jctn.2019.8591.

S. Czabaj, J. Kawa-Rygielska, A.Z. Kucharska, J. Kliks, Molecules 22 (2017) 803—818. https://doi.org/10.3390/molecules22050803.

U. Miljić, Ph.D. Thesis, University of Novi Sad (in Serbian) (2015) https://nardus.mpn.gov.rs/handle/123456789/1815?locale-attribute=sr_RS.

A.C. Şarba, Ph.D. Thesis, University of Cluj-Napoca (2015) (in English) www.usamvcluj.ro/en/files/teze/en/2015/Şarba.pdf.

D. Kahoun, S. Řezková, K. Veškrnová, J. Královský, M. Holčapek, J. Chromatogr. A 1202 (2008) 19—33. https://doi.org/10/1016/j.chroma.2008.06.016.

J.N. Eloff, I.E. Angeh, L.J. McGaw, Ind. Crop. Prod. 110 (2017) 103—112. https://doi.org/10.1016/j.indcrop.2017.11.014.

J.N. Eloff, BMC Complementary Altern. Med. 19 (2019) 106—114. https://doi.org/10.1186/s12906-019-2519-3.

M. Stojković, D. Cvetković, A. Savić, Lj. Topalić-Trivunović, A. Velemir, S. Papuga, M. Žabić, J. Food Sci. Technol. 58 (2021) 2555—2566. https://doi.org/10.1007/s13197-020-04762-2.

P.C. Molan, Bee World 73 (1992) 5—28. https://doi.org/10.1080/0005772X.1992.11099109.

S. Bogdanov, LWT- Food Sci. Technol. 30 (1997) 748—753.

https://doi.org/10.1016/fstl.1997.0259.

F.J. Leyva-Jimeneza, J. Lozano-Sanchez, I. Borras-Linares, M.L. Cadiz-Gurrea, E. Mahmoodi-Khaledi, LWT-Food Sci. Technol. 101 (2019) 236—245. https://doi.org/10.1016/j.lwt.2018.11.015.

M. Fikselova, M. Kačaniova, L. Hleba, M. Mellen, N. Vučković, M. Dzugan, Anim. Sci. Biotechnol. 47 (2014) 218—224. https://web.archive.org/web/20180502025911id_/http://www.spasb.ro/index.php/spasb/article/viewFile/1697/1722.

N.Z. Srećković, V.B. Mihailović, J.S. Katanić-Stanković, Kragujev. J. Sci. 41 (2019) 53—68. https://doi.org/10.5937/KgJSci1941053S.

M.E. Weise, B. Eberly, D.A. Person, BMJ 311 (1995) 1657—1660. https://doi.org/10.1136/bmj.311.7021.1657.

M.J.R. Vaquero, M.R. Alberto, M.C.M. de Nadra, Food Control 18 (2007) 93—101. https://doi.org/10.1016/j.f00dc0nt.2005.08.010.

A. Radovanović, B. Radovanović, B. Jovančićević, Food Chem. 117 (2009) 326—331. https://doi.org/10.1016/j.foodchem.2009.04.008.

J.J. Vulić, T.N. Cebović, V.M. Candanović, G.S. Cetković, S.M. Đilas, J.M. Candanović-Brunet, J.M. Velićanski, D.D. Cvetković, V.T. Tumbas, Food Funct. 4 (2013) 713—721. https://doi.org/10.1039/c3fo30315b.

N.K. Steth, T.R. Wisniewski, T.R. Franson, Am. J. Gastroenterol. 83 (1988) 658—660. https://pubmed.ncbi.nlm.nih.gov/3287903/.

H. Arima, H. Ashida, G. Danno, Biosci. Biotechnol. Biochem. 66 (2002) 1009—1014. https://10.1271/bbb.66.1009.

N. Boban, M. Tonkic, D. Budimir, D. Modun, D. Sutlovic, V. Punda-Polic, M. Boban, J. Food Sci. 75 (2010) 322—326. https://10.1111/j.1750-3841.2010.01622.x.

J. Krisch, G. László, M. Tölgyesi, T. Papp, C. Vágvölgyi, Acta Biol. (Szeged) 52 (2008) 267—270. https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2639/2631.

T. Krstić, Ph.D. Thesis, University of Novi Sad (in Serbian) (2018) https://nardus.mpn.gov.rs/handle/123456789/11068.

Graphical Abstract

Downloads

Published

06.09.2022 — Updated on 20.01.2023

Issue

Section

Articles

How to Cite

EFFECTS OF ADDING DIFFERENT QUANTITIES OF YEAST AND CHOKEBERRY JUICE ON FERMENTATION OF MEAD: Scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(2), 149-160. https://doi.org/10.2298/CICEQ220325022M

Similar Articles

21-30 of 88

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)