EFFECT OF STORAGE PROCESS ON NUTRITIVE PROPERTIES OF PRETERM HUMAN MILK

Scientific paper

Authors

  • Nikoleta Lugonja University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoseva 12, Belgrade, Serbia https://orcid.org/0000-0002-5093-4448
  • Vesna Marinković Institute of Neonatology, Kralja Milutina 50, Belgrade, Serbia https://orcid.org/0000-0002-8325-1870
  • Biljana Miličić University of Belgrade, School of Dentistry,Department of Statistics, Rankeova 4, Belgrade, Serbia https://orcid.org/0000-0001-8091-2461
  • Jelena Avdalović University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoseva 12, Belgrade, Serbia https://orcid.org/0000-0001-9917-7997
  • Miroslav Vrvić Brem group, Ltd., Oslobodjenja 39b, Belgrade, Serbia https://orcid.org/0000-0002-6867-5405
  • Snežana Spasić University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoseva 12, Belgrade, Serbia https://orcid.org/0000-0003-1731-3508

DOI:

https://doi.org/10.2298/CICEQ220117021L

Keywords:

preterm human milk, pasteurization, freeze storage

Abstract

Freeze storage and pasteurization of human milk are common treatments in milk banks. However, thermal treatment changes milk quality for preterm infants’ nutrition. Therefore, this paper aimed to examine preterm human milk's nutritional profile and antioxidant potential after storage, pasteurization, and after supplementation with a fortifier. The effects of storage processes were estimated on the mature preterm milk of 30 breastfeeding women. Total proteins, lipids, and lactose were determined after thermal processing and supplementing mature preterm milk with a fortifier. The ferric-reducing antioxidant potential method and lipid peroxidation inhibition assay determined the antioxidant capacity. Protein concentration decreased after frozen storage and pasteurization (p<0.05). Pasteurization further reduced the lipid concentration after freezing. The ferric-reducing antioxidant potential decreased after thermal treatments (p<0.05). Supplementing mature milk with a fortifier increased the concentration of proteins, lipids, and lactose. Our findings demonstrated that storage and pasteurization processes affect preterm human milk's basic nutritional composition and antioxidant capacity. To ensure adequate nutrition for preterm infants with preterm human milk, supplementation, especially with high concentrations of proteins and lipids, is necessary after thermal treatments.

References

World Health Organization. Guidelines on optimal feeding of low birth-weight infants in low- and middle-income countries. Retrieved from https://www.who.int/maternal_child_adolescent/documents/infant_feeding_low_bw/en/ ⦋accessed 21 April 2021⦌.

H.G. Kanmaz, B. Mutlu, F.E. Canpolat, O. Erdeve, S.S. Oguz, N. Uras, U. Dilmen, J. Hum. Lactation 29 (2013) 400—405. https://doi.org/10.1177/0890334412459.

B. Lonnerdal, Nutrition 16 (2000) 509—511. https://doi.org/10.1016/S0899-9007(00)00363-4.

M. A. Underwood, Pediatr. Clin. North Am. 60(1) (2013) 189—207. https://doi.org/10.1016/j.pcl.2012.09.008.

J. Kim, S. Unger, Paediatr. Child Health 15(9) (2010) 595—598. https://doi.org/10.1093/pch/15.9.595.

C. Pound, S. Unger, B. Blair, Paediatr. Child Health 25(8) (2020) 549—550. https://doi.org/10.1093/pch/pxaa118.

C. Hanson, E. Lyden, J. Furtado, M. Van Ormer, A. Anderson-Berry, Nutrients 8 (2016) 681. https://doi.org/10.3390/nu8110681.

Y. Ozsurekci, K. Aykac, Oxid. Med. Cell. Longevity (2016) ID 2768365. https://doi.org/10.1155/2016/2768365.

C. Matos, M. Ribeiro, A. Guerra, J. Appl. Biomed. 13 (2015) 169—180. https://doi.org/10.1016/j.jab.2015.04.003.

D. Huang, B. Ou, RL Prior, J. Agric. Food Chem. 23 (2005) 1841—1856. https://doi.org/10.1021/jf030723c.

I.F. Benzie, J.J. Strain, Methods Enzymol. 299 (1999) 15—27. https://doi.org/10.1016/S0076-6879(99)99005-5.

K. Jomova, M. Valko, Toxicology 283 (2011) 65—87. https://doi.org/10.1016/j.tox.2011.03.001.

C. Agostini, G. Buonocore, V.P. Carnielli, M. De Curtis, D. Darmaun, T. Decsi, M. Domellöf, N.D. Embleton, et al., J. Pediatr. Gastroenterol. Nutr. 50 (2010) 85—91. https://doi.org/10.1097/MPG.0b013e3181adaee0.

A. Choi, G. Fusch, N. Rohow, C. Fusch, Plos One 11(2) (2016) e0148941. https://doi.org/10.1371/journal.pone.0148941.

S. Arslanoglu, G.E. Moro, E.E. Ziegler, J. Perinat. Med. 38(3) (2010) 233—238. https://doi.org/10.1515/jpm.2010.073.

N. Lugonja, D. Stankovic, B. Milicic, S. Spasic, V. Marinkovic, M.M. Vrvic, Food Chem. 240 (2018) 567—572. https://doi.org/10.1016/j.foodchem.2017.07.164.

N. Kamizakea, M. Gonçalves, T.B.V. Cássia, C. Zaia, D. Zaia, J. Food. Compost. Anal. 16 (2003) 507—516. https://doi.org/10.1016/S0889-1575(03)00004-8.

EN ISO 8262-1|IDF 124-1: Milk products and milk-based foods — Determination of fat content by the Weibull-Berntrop gravimetric method (Reference method) — Part 1: Infant foods (2005). https://www.iso.org/standard/42070.html.

H.O. Beutler, in Methods of Enzymatic Analysis, Bergmeyer, H. U. Ed., VCH Publishers (UK.) Ltd, Cambridge, UK, (1988), p. 104. ISBN 978-0-12-091302-2.

FAO, in Food Energy – Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, (2003), p.77. ISBN 92-5-105014-7.

I.F. Benzie, J.J. Strain, Anal. Biochem. 239 (1996) 70—76. https://doi.org/10.1006/abio.1996.0292.

R.D. Janero, Free Rad. Biol. Med. 9 (1990) 515—540. https://doi.org/10.1016/0891-5849(90)90131-2.

N. García-Lara, D. Vieco, D.J. Cruz-Bértolo, D. Lora, N. Ureta-Velasco, C. Pallás-Alonso, J. Pediatr. Gastroenterol. Nutr. 57(3) (2013) 377—382. https://doi.org/10.1097/MPG.0b013e31829d4f82.

O. Ballard, A.L. Morrow, Pediatr. Clin. North Am. 60 (2013) 49—74. https://doi.org/10.1016/j.pcl.2012.10.002.

C.A. Butts, D.I. Hedderley, T.D. Herath, G. Paturi, S. Glyn-Jones, F. Wiens, B. Stahl, P. Gopal, Nutrients 10(9) (2018) 1231. https://doi.org/10.3390/nu10091231.

L. Lamport, C. Hartman, C. Codipilly, B. Weinberger, R. Schanler, J. Parenter. Enteral Nutr. 43 (2018) 809—814. https://doi.org/10.1002/jpen.1470.

A.A. Vieira, F.V. Soares, H.P. Pimenta, D. Abranches , E. Moreira, Early Hum. Dev. 87(8) (2011) 577—580. https://doi.org/10.1016/j.earlhumdev.2011.04.016.

V. Marinković, M. Ranković-Janevski, S. Spasić, A. Nikolić-Kokić, N. Lugonja, D. Djurović, S. Miletić, M. Vrvić, I. Spasojevic, J. Pediatr. Gastroenterol. Nutr. 62 (2016) 901—906. https://doi.org/10.1097/MPG.0000000000001090.

Graphical Abstract

Downloads

Published

04.09.2022 — Updated on 20.01.2023

Issue

Section

Articles

How to Cite

EFFECT OF STORAGE PROCESS ON NUTRITIVE PROPERTIES OF PRETERM HUMAN MILK: Scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(2), 141-148. https://doi.org/10.2298/CICEQ220117021L

Similar Articles

You may also start an advanced similarity search for this article.