STUDY ON HEAT EXCHANGERS AND INDUSTRIAL ABSORPTION COLUMN FOR DRYING POLYETHYLENE TEREPHTHALATE
Scientific paper
DOI:
https://doi.org/10.2298/CICEQ210622020SKeywords:
humidity, dew point, PET flakes, polyester, McCabe-ThieleAbstract
This study proposes the use of mass balance and the method of McCabe-Thiele in the absorption column for the removal of drying air humidity with ethylene glycol and energy balances in heat exchangers for the determination of the optimum operating conditions of a factory to produce recycled polyester fibers from polyethylene terephthalate (PET) flakes. The evaluation of these machines involved the combination of variables such as temperature, flow rate, specific heat, and operational efficiency to guarantee the correct adjustment of the physicochemical properties of the fluids and materials of the process. The efficiency of the absorption column was determined at 25%, and a diagram correlating ethylene glycol humidity, the dew point of the drying air, and the efficiency of humidity removal from the PET flake dryer were constructed to define what is the most appropriate configuration for operation. By the graph curves, it was found that the humidity of ethylene glycol for absorption should be inferior to 1% (w/w) to guarantee a dew point < -27 °C at 175 °C of the drying air introduced in the dryer, which would finally promote a removal with efficiency superior to 91% of the PET flake humidity for values < 0.005% (w/w).
References
A.M. Al-Sabagh, F.Z. Yehia, G. Eshaq, A.M. Rabie, A.E. ElMetwally, Egypt. J. Pet. 25 (2016) 53—64. https://doi.org/10.1016/j.ejpe.2015.03.001.
J.C.T. Picazo, J.G.L. Bárcenas, A.G. Chávez, R.G. Nuñez, A.B. Petriciolet, C.A. Castillo, Fibers Polym. 15 (2014) 547—552. https://doi.org/10.1007/s12221-014-0547-7.
J. Scheirs, T.E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons Ltd, Chichester (2003), p. 44—54. ISBN: 978-0-471-49856-8.
A. Elamri, K. Abid, O. Harzallah, A. Lallam, Am. J. Nano Res. Appl. 3 (2015) 11—16. https://doi.org/10.11648/j.nano.s.2015030401.13.
S.A. Jabarin, E.A. Lofgren, J. Appl. Polym. Sci. 32 (1986) 5315—5335. https://doi.org/10.1002/app.1986.070320607.
H. Lobo, J.V. Bonilla, Handbook of Plastics Analysis, Marcel Dekker, Inc. New York (2003), p. 101—105. https://doi.org/10.1201/9780203911983.
Plastics Technology, How to Dry PET for Container Applications,(2014). https://www.ptonline.com/articles/how-to-dry-pet-for-container-applications.
B. Demirel, A. Yaraș, H. Elçiçek, BAÜ Fen Bil. Enst. Dergisi Cilt 13 (2011) 26—35. https://acikerisim.bartin.edu.tr/bitstream/handle/11772/1592/33-52-1-SM.pdf?sequence=1.
M. Zanin, S. D. Mancini, Resíduos plásticos e reciclagem: aspectos gerais e tecnologia, EdUFSCar, São Carlos, (2015), p. 82—87. https://doi.org/10.7476/9788576003601.
J.D. Seader, E.J. Henley, D.K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3th Ed., John Wiley & Sons, (2011), p. 111—113. https://imtk.ui.ac.id/wp-content/uploads/2014/02/Separation-Process-Principles-Third-Edition.pdf.
A.S. Mujundar, Handbook of Industrial Drying, 4th Ed., CRC Press New Jersey (2015), p. 204—207, https://doi.org/10.1201/b17208.
B.D. Whitehead, Ind. Eng. Chem. Process Des. Dev. 16 (1977) 341—346. https://doi.org/10.1021/i260063a017.
F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentos de Transferência de Calor e de Massa, LTC, (2012), p. 427—430. http://ftp.demec.ufpr.br/disciplinas/TMEC030/Prof_Luciano/Fundamentos-de-transferencia-de-calor-e-de-massa-incropera.pdf.
J.R. Welty, C.E. Wicks, R.E. Wilson, G.L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley & Sons, (2008), p. 142—150. ISBN: 978-0470128688.
C. Lambré, J.M.B. Baviera, C. Bolognesi, A.Chesson, P.S. Cocconcelli, R.Crebelli, D.M. Gott, K. Grob, M. Mengelers, A. Mortensen, G. Rivière, I.-L. Steffensen, C. Tlustos, H. Van Loveren, L. Vernis, H. Zorn, V. Dudler, M.R. Milana, C. Papaspyrides, M. de Fátima Tavares Poças, A. Lioupis, R. Marano, E. Lampi, EFSA J., 19 (2021) 6791—6804. https://doi.org/10.2903/j.efsa.2021.6791.
I.S. Al-Haydari, H.S. Al-Haidari, IOP Conf. Ser.: Mater. Sci. Eng. 870 (2020) 1—9. https://doi.org/10.1088/1757-899X/870/1/012073.
F.Z. Silva, I.C. Bastos, R.F. Perna, S.A.V. Morales, Chem. Ind. Chem. Eng. Q. 27 (2021) 289—298. https://doi.org/10.2298/CICEQ200121047Z.
M. Ahani, M. Khatibzadeh, M. Mohseni, Nanocomposites 2 (2016) 29—36. https://doi.org/10.1080/20550324.2016.1187966.
A. Telli, N.J. Özdil, J. Eng. Fibers Fabr. 10 (2015) 47—60. https://doi.org/10.1177/155892501501000206.
E. Tavcar, E. Turk, S. Kreft, J. Anal. Methods Chem. (2012) 379724. https://doi.org/10.1155/2012/379724.
M. Margreth, R. Schlink, A. Steinbach, Water Determination By Karl Fischer Titration. Analysis and Pharmaceutical Quality, John Wiley & Sons, (2010), p. 22—24. https://doi.org/10.1002/9780470571224.pse415.
E. Scholz, Karl Fischer Titration Determination of Water, Springer-Verlag Berlin Heidelberg, (1984), p. 31—33. https://doi.org/10.1007/978-3-642-69989-4.
M. Saçak, N. Bastug, M. Talu, J. Appl. Polym. Sci. 50 (1993) 1123—1129. https://doi.org/10.1002/app.1993.070500702.
M.G. Lawrence, Am. Meteorol. Soc. (2005) 225—233. https://doi.org/10.1175/BAMS-86-2-225.
M. Olbricht, A. Luke, Heat Mass Transfer 55 (2019) 81—93. https://doi.org/10.1007/s00231-018-2363-x.
K. Senthilkumar, I. Siva, J.J.T. Winowlin, M. Vikneshwararaj, J. Chem. Pharm. Sci. 7 (2015) 172—174. http://www.jchps.com/specialissues/Special%20issue%207/43%20MITNC-48%20K.%20Senthilkumar%20172-174.pdf.
W.M. Haynes, T.J. Bruno, D.R. Lide, CRC Handbook of
Chemistry and Physics, CRC Press/Taylor and Francis (2016), p. 2520. https://doi.org/10.1201/9781315380476.
T.K. Ibrahim, R.K. Abdulrahman, F.H. Khalaf, I.M Kamal, J. Chem. Eng. Process Technol. 8 (2017) 1000337. https://doi.org/10.4172/2157-7048.1000337.
B. Mishra, A. Srivastava, K. Yadav, Heat Mass Transfer 56 (2020) 1153—1169. https://doi.org/10.1007/s00231-019-02759y.
Yount FS. et. al. (2021) ASHRAE Handbook of Fundamentals. SI Edition. ASHRAE, Atlanta, USA. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2021-ashrae-handbook-fundamentals.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Felipe Zauli da Silva, Izabella Carneiro Bastos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.