ENERGY SAVING IN OILFIELDS BY USING WASTE HEAT IN THE DISPOSED WATER Scientific paper

Main Article Content

Walaa Mahmoud Shehata
https://orcid.org/0000-0002-3280-4834
Mohamed Galal Helal
Fatma Khalifa Gad

Abstract

The present work aims to retrofit an existing Egyptian oilfield plant to improve desalter performance and reduce the power of crude oil shipping pumps. In this work, waste heat in disposed water that represents a value is used in heating brackish water injected over desalter and in heating crude oil before shipping. ASPEN HYSYS version 11 simulation software was used. The retrofit of the considered oilfield plant is based on the implementation of two new heat exchangers to recover waste heat in the disposed water. The results showed that using waste heat to heat the brackish water in the desalter from 30 °C to 71.11 °C will increase the operating temperature of the desalter and thus increase the sedimentation and separation rate. On the other hand, using waste heat in heating the crude oil before shipping from 37.78 °C to 71.11 °C reduces the oil viscosity from 1.536 cSt to 0.9735 cSt. Reducing the viscosity of the crude oil will reduce the pressure drop of the shipping pumps, and therefore the power required to pump the oil will be reduced. The presented retrofit design can be used as a guide in upgrading existing plants and plants under the design phase.

Article Details

How to Cite
Shehata, W. M. ., Helal, M. G. ., & Gad, F. K. . (2023). ENERGY SAVING IN OILFIELDS BY USING WASTE HEAT IN THE DISPOSED WATER: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(2), 119–128. https://doi.org/10.2298/CICEQ211201019S
Section
Articles

References

A. Hart, J. Pet. Explor. Prod. Technol. 4 (3) (2014) 327—336. https://doi.org/10.1007/s13202-013-0086-6.

Y. Al-Roomi, R. George , A. Elgibaly, A. Elkamel, J. Pet. Sci. Eng. 42 (2–4) (2004) 235—243. https://doi.org/10.1016/j.petrol.2003.12.014.

R. Martinez-Palou, M.D.L. Mosqueira, B. Zapata-Rendon, E. Mar-Juarez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, J. Aburto, J. Pet. Sci. Eng. 75 (3—4) (2011) 274—282. https://doi.org/10.1016/j.petrol.2010.11.020.

A. Saniere, I. Henaut, J.F. Argillier, Oil Gas Sci. Technol. 59 (5) (2004) 455—466. https://doi.org/10.2516/ogst:2004031.

R.I. Ibrahim, M.K. Odah, A. Al-Mufti, IOP Conf. Ser.: Mater. Sci. Eng. 579 (1) (2019) 012054. https://doi.org/10.1088/1757-899X/579/1/012054.

R.G. Santos, W. Loh, A. C. Bannwart, O. V. Trevisan, Braz. J. Chem. Eng. 31 (3) (2014) 571—590. https://doi.org/10.1590/0104-6632.20140313s00001853.

S.W. Hasan, M.T. Ghannam, N. Esmail, Fuel 89 (5) (2010) 1095—1100. https://doi.org/10.1016/j.fuel.2009.12.021.

B.M. Yaghi, A. Al-Bemani, Energy Sources 24 (2) (2002) 93—102. https://doi.org/10.1080/00908310252774417.

P. Gateau, I. Henaut, L. Barre, J. F. Argillier, Oil Gas Sci. Technol. 59 (5) (2004) 503—509. https://doi.org/10.2516/ogst:2004035.

M.S. Rana, V. Sa´mano, J. Ancheyta, J.A.I. Diaz, Fuel 86 (2007) 1216—1231. https://doi.org/10.1016/j.fuel.2006.08.004.

N. Shigemoto, R.S. Al-Maamari, B.Y. Jibril, A. Hirayama, Energy Fuels 20 (6) (2006) 2504—2508. https://doi.org/10.1021/ef060074h.

J.J. Wylde, D. Leinweber, D. Low, G. Botthof, A.P. Oliveira, C. Royle, C. Kayser, Proc. World Heavy Oil Congr., Aberdeen, Scottland, Canada Inc (2012).

A. Bensakhria, Y. Peysson, G. Antonini, Oil Gas Sci. Technol. 59 (5) (2004) 523—533. https://doi.org/10.2516/ogst:2004037.

T. Zhou, K.C. Leong, K.H. Yeo, Int. J. Heat Mass Transfer 49 (7-8) (2006) 1462—1471. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.023.

S.N. Milligan, R.L. Johnston, T.L. Burden, W.R. Dreher, K.W. Smith, DRAG Harris, U.S. Patent Application 8,022,118 B2 (2011). https://patentimages.storage.googleapis.com/dd/4e/8d/8725cef978517d/US8022118.pdf.

Z. Matras, T. Malcher, B. Gzyl-Malcher, Thin Solid Films 516 (24) (2008) 8848—8851. https://doi.org/10.1016/j.tsf.2007.11.057.

R.A. Soldi, A.R.S. Oliveira, R.V. Barbosa, M.A.F. Cesar-Oliveira, Eur. Polym. J. 43 (8) (2007) 3671—3678. https://doi.org/10.1016/j.eurpolymj.2006.07.021.

J. Jing, R. Yin, Y. Yuan, Y. Shi, J. Sun, M. Zhang, ACS Omega 5 (2020) 9870—9884. https://doi.org/10.1021/acsomega.0c00097.

M.T. Ghannam, N. Esmail, Pet. Sci. Technol. 24 (8) (2006) 985—999. https://doi.org/10.1081/LFT-200048166.

C. Chang, Q.D. Nguyen, H.P. Rønningsen, J. Non-Newtonian Fluid Mech. 87 (2—3) (1999) 127—154. https://doi.org/10.1016/S0377-0257(99)00059-2.

E. Worrell, C. Galitsky, Energy Efficiency Improvement in the Petroleum Refining Industry, ACEEE Summer Study on Energy Efficiency in Industry, NY, August (2005) 158—169. https://doi.org/10.2172/862119.

M. Mahinroosta, Review on Energy Efficiency Improvement methods for Oil and Gas Industries, In Proceedings of the

nd Conference on Emerging Trends in Energy Conservation, Tehran, Iran (2013). https://www.researchgate.net/publication/301221524_A_Review_on_Energy_Efficiency_Improvement_methods_for_Oil_and_Gas_Industries.

E. Yanez, A. Ramírez, A. Uribe, E. Castillo, A. Faaij, J. Cleaner Prod. 176 (2018) 604—628. https://doi.org/10.1016/j.jclepro.2017.12.085.

W. Ping, X. Changfang, X. Shiming, G. Yulin, Procedia Environ. Sci. 12 (2012) 387—393. https://doi.org/10.1016/j.proenv.2012.01.294.

F.M. White, Fluid Mechanics, 7th ed., McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc. (2011). http://ftp.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliografia/White_2011_7ed_Fluid-Mechanics.pdf.

W.S. Janna, Introduction to Fluid Mechanics, 4th ed. CRC Press, Taylor & Francis Group, LLC., (2010). https://doi.org/10.1201/b18979.

S. Sarbjit, Experiments in Fluid Mechanics, 2nd ed., PHI Learning Pvt. Ltd, New Delhi, (2012). ISBN: 9788120345119, 8120345118.

R.I. Ibrahim, M.K. Oudah, A.F. Hassan, J. Pet. Sci. Eng. 156 (2017) 356—365. https://doi.org/10.1016/j.petrol.2017.05.028.

L. Vafajoo, K. Ganjian, M. Fattahi, J. Pet. Sci. Eng. 90—91 (2012) 107—111. https://doi.org/10.1016/j.petrol.2012.04.022.

B.Y. Kim, J.H. Moon, T.-H. Sung, S.-M. Yang, J.-D. Kim, Sep. Sci. Technol. 37 (6) (2002) 1307—1320. https://doi.org/10.1081/SS-120002613.

A.J. Kidnay, W.R. Parrish, D. G. McCartney, Fundamentals of Natural Gas Processing, 3rd ed., CRC Press, Taylor & Francis Group, LLC. (2019). https://doi.org/10.1201/9780429464942.