RESISTANCE TO FROST ACTION AND MICROBIOLOGICAL CORROSION OF NOVEL CERAMIC COMPOSITES

Scientific paper

Authors

  • Vojo Jovanov Ss. Cyril and Methodius University in Skopje https://orcid.org/0000-0001-7734-0757
  • Snežana Vučetić 2University of Novi Sad, Faculty of Technology, Novi Sad, Serbia https://orcid.org/0000-0002-6415-3837
  • Siniša Markov University of Novi Sad https://orcid.org/0000-0001-9758-7482
  • Biljana Angjusheva Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Rudjer Boskovic 16, 1000 Skopje, Republic of North Macedonia
  • Emilija Fidancevska Ss. Cyril and Methodius University in Skopje
  • Jonjaua Ranogajec 2University of Novi Sad, Faculty of Technology, Novi Sad, Serbia https://orcid.org/0000-0002-9831-2998

DOI:

https://doi.org/10.2298/CICEQ210904016J

Keywords:

waste treatment, fly ash, ceramic, weathering, pore size distribution, thermal analysis

Abstract

This work illustrates the prediction of frost action mechanisms on ceramic compacts and their biocorrosion resistance to fungus action. The ceramic compacts were produced from two raw materials: coal fly ash (40 wt.%) and clay material (60 wt.%). The ceramics models were made in laboratory conditions by pressing (P = 45 MPa), drying (105 °C, 3h), and sintering (1100 °C, 1 h; heating rates 3 °C/min and 10 °C/min.). The mechanisms responsible for the deterioration of the designed ceramic compacts were defined based on the values of the total porosity, pore size distribution, pore critical radius, and the Maage factor, as well as on the values of water permeability. The biocorrosion process was investigated using Aspergillus niger fungus as a model microorganism. The different degrees of fungus colonization on the designed compacts were comparatively analyzed based on the Scanning Electron Microscopy investigation results. The gained results are encouraging as they show that the utilization of fly ash (40 wt.%) in ceramic composites is possible without significant deterioration of their durability (frost action and microbiological corrosion resistance) compared with the ones whose production was based only on clay material.

References

B. Angjusheva, E. Fidancevska, K. Lisichkov, V. Jovanov, J. Eng. Process. Manage. 8 (2016) 73—79. https://doi.org/10.7251/JEPMEN1608073A.

S. Kramar, L. Zilbert, E. Fidancevska, V. Jovanov, B. Angjusheva, V. Ducman, Mater. Constr. 69 (333) (2019) e176. https://doi.org/10.3989/mc.2019.11617.

D. Jubinville, E. Esmizadeh, S. Saikrishnan, C. Tzoganakis, T. Mekonnen, Sustainable Mater. Technol. 25 (2020) e00188. https://doi.org/10.1016/j.susmat.2020.e00188.

B. Angjusheva, E. Fidancevska, V. Jovanov, Qual. Life 7(3—4) (2016) 59—65. https://doi.org/10.7251/QOL1603059A.

B. Angjusheva, E. Fidancevska, V. Jovanov, Qual. Life 7(3—4) (2016) 53—58. https://doi.org/10.7251/QOL1603053A.

M. Sutcu, E. Erdogmus, O. Gencel, A. A Gholapour, E. Atan, T. Ozbakkaloglu, J. Cleaner Prod. 233 (2019) 753—764. https://doi.org/10.1016/j.jclepro.2019.06.017.

P. Lopez-Arcea, J. Garcia-Guinea, Build. Environ. 40 (2005) 929—941. https://doi.org/10.1016/j.buildenv.2004.08.027.

P. Berdahl, H. Akbari, R. Levinson, W.A. Miller, Constr. Build. Mater. 22 (2008) 423—433. https://doi.org/10.1016/j.conbuildmat.2006.10.015.

K. Ikeda, H.-S. Kim, K. Kaizu, A. Higashi, J. Eur. Ceram. Soc. 24 (2004) 3671—3677. https://doi.org/10.1016/j.jeurceramsoc.2003.12.014.

M. Maage, ZI, Ziegelind. Int. 9 (1990) 472—481.

M. Maage, ZI, Ziegelind. Int. 10 (1990) 582—588.

L. Franke, H. Bentrup, ZI, Ziegelind. Int. 7-8 (1993) 483—492.

R. Koroth, P. Fazio, D. Fedman, J. Archit. Eng. 9 (1998) 87—93. https://ascelibrary.org/doi/10.1061/%28ASCE%291076-0431%281998%294%3A1%2826%29.

G.C. Robinson, Amer. Ceram. Soc. Bull. 56 (1995) 1071—1075.

P. Vincenzini, Ceramurgia 3 (1974) 176—188.

I.N. Grubeša, M. Vračević , J. Ranogajec, S. Vučetić, Materials 13 (2020) 2364. https://doi.org/10.3390/ma13102364.

J.G. Ranogajec, S.L. Markov, O.Lj. Rudić, S.B. Vuĉetić, V.S. Ducman, Acta Period. Technol. 42 (1-288) (2011) 197—207. https://doi.org/10.2298/APT1142197R.

M.L. Coutinho, J.P. Veig, M.F. Macedo, A.Z. Miller, Coatings 10 (2020) 1169. https://doi.org/10.3390/coatings10121169.

W. Sand, Int. Biodeterior. 40 (1997) 183—190. https://doi.org/10.1016/S0964-8305(97)00048-6.

J. Ranogajec, M. Radeka, in Self-Cleaning Materials and Surfaces, W.A. Daoud Ed., Wiley Online Library, (2013) 89—128. https://doi.org/10.1002/9781118652336.ch4.

V. Jovanov, B. Anguseva, K. Pantovic, E. Fidancevska, “Ecological Truth” ECO-IST’15, XXIII International conference, Kopaonik, Serbia (2015) 207—211.

V. Ducman, A.S. Skapin, M. Radeka, J. Ranogajec, Ceram. Int. 37 (2011) 85—91. https://doi.org/10.1016/j.ceramint.2010.08.012.

M. Radeka, J. Ranogajec, J. Kiurski, S. Markov, R. Marinković-Nedučin, J. Eur. Ceram. Soc. 27 (2—3) (2007) 1763—1766. https://doi.org/10.1016/j.jeurceramsoc.2006.05.001.

T. Chand Dakal, S.S. Cameotra, Environ. Sci. Eur. 24 (2012) 1—13. https://doi.org/10.1186/2190-4715-24-36.

B. Angjusheva, E. Fidancevska,V. Jovanov, Chem. Ind. Chem. Eng. Q. 18 (2012) 245—254. https://doi.org/10.2298/CICEQ110607001A.

H.S. Kim, J.M. Kim. K. Ikeda, Br. Ceram. Trans. 102 (2003)133-137. https://doi.org/10.1179/096797803225001623.

M. Sveda, ZI, Ziegelind. Int. 55, (2002) 29—33.

M. Sveda, ZI, Ziegelind. Int. 57 (2004) 36—43.

T. Hulan, I. Stubna, J. Ondruska, A. Trnik, Minerals 10(10) (2020) 930. https://doi.org/10.3390/min10100930.

Graphical Abstract

Downloads

Published

26.07.2022 — Updated on 20.01.2023

Issue

Section

Articles

How to Cite

RESISTANCE TO FROST ACTION AND MICROBIOLOGICAL CORROSION OF NOVEL CERAMIC COMPOSITES: Scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(2), 99-109. https://doi.org/10.2298/CICEQ210904016J

Similar Articles

21-30 of 94

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)