RESISTANCE TO FROST ACTION AND MICROBIOLOGICAL CORROSION OF NOVEL CERAMIC COMPOSITES Scientific paper

Main Article Content

Vojo Jovanov
https://orcid.org/0000-0001-7734-0757
Snežana Vučetić
https://orcid.org/0000-0002-6415-3837
Siniša Markov
https://orcid.org/0000-0001-9758-7482
Biljana Angjusheva
Emilija Fidancevska
Jonjaua Ranogajec
https://orcid.org/0000-0002-9831-2998

Abstract

This work illustrates the prediction of frost action mechanisms on ceramic compacts and their biocorrosion resistance to fungus action. The ceramic compacts were produced from two raw materials: coal fly ash (40 wt.%) and clay material (60 wt.%). The ceramics models were made in laboratory conditions by pressing (P = 45 MPa), drying (105 °C, 3h), and sintering (1100 °C, 1 h; heating rates 3 °C/min and 10 °C/min.). The mechanisms responsible for the deterioration of the designed ceramic compacts were defined based on the values of the total porosity, pore size distribution, pore critical radius, and the Maage factor, as well as on the values of water permeability. The biocorrosion process was investigated using Aspergillus niger fungus as a model microorganism. The different degrees of fungus colonization on the designed compacts were comparatively analyzed based on the Scanning Electron Microscopy investigation results. The gained results are encouraging as they show that the utilization of fly ash (40 wt.%) in ceramic composites is possible without significant deterioration of their durability (frost action and microbiological corrosion resistance) compared with the ones whose production was based only on clay material.

Article Details

How to Cite
Jovanov, V. ., Vučetić, S. ., Markov, S., Angjusheva, B. ., Fidancevska, E. ., & Ranogajec, J. (2023). RESISTANCE TO FROST ACTION AND MICROBIOLOGICAL CORROSION OF NOVEL CERAMIC COMPOSITES: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(2), 99–109. https://doi.org/10.2298/CICEQ210904016J
Section
Articles

References

B. Angjusheva, E. Fidancevska, K. Lisichkov, V. Jovanov, J. Eng. Process. Manage. 8 (2016) 73—79. https://doi.org/10.7251/JEPMEN1608073A.

S. Kramar, L. Zilbert, E. Fidancevska, V. Jovanov, B. Angjusheva, V. Ducman, Mater. Constr. 69 (333) (2019) e176. https://doi.org/10.3989/mc.2019.11617.

D. Jubinville, E. Esmizadeh, S. Saikrishnan, C. Tzoganakis, T. Mekonnen, Sustainable Mater. Technol. 25 (2020) e00188. https://doi.org/10.1016/j.susmat.2020.e00188.

B. Angjusheva, E. Fidancevska, V. Jovanov, Qual. Life 7(3—4) (2016) 59—65. https://doi.org/10.7251/QOL1603059A.

B. Angjusheva, E. Fidancevska, V. Jovanov, Qual. Life 7(3—4) (2016) 53—58. https://doi.org/10.7251/QOL1603053A.

M. Sutcu, E. Erdogmus, O. Gencel, A. A Gholapour, E. Atan, T. Ozbakkaloglu, J. Cleaner Prod. 233 (2019) 753—764. https://doi.org/10.1016/j.jclepro.2019.06.017.

P. Lopez-Arcea, J. Garcia-Guinea, Build. Environ. 40 (2005) 929—941. https://doi.org/10.1016/j.buildenv.2004.08.027.

P. Berdahl, H. Akbari, R. Levinson, W.A. Miller, Constr. Build. Mater. 22 (2008) 423—433. https://doi.org/10.1016/j.conbuildmat.2006.10.015.

K. Ikeda, H.-S. Kim, K. Kaizu, A. Higashi, J. Eur. Ceram. Soc. 24 (2004) 3671—3677. https://doi.org/10.1016/j.jeurceramsoc.2003.12.014.

M. Maage, ZI, Ziegelind. Int. 9 (1990) 472—481.

M. Maage, ZI, Ziegelind. Int. 10 (1990) 582—588.

L. Franke, H. Bentrup, ZI, Ziegelind. Int. 7-8 (1993) 483—492.

R. Koroth, P. Fazio, D. Fedman, J. Archit. Eng. 9 (1998) 87—93. https://ascelibrary.org/doi/10.1061/%28ASCE%291076-0431%281998%294%3A1%2826%29.

G.C. Robinson, Amer. Ceram. Soc. Bull. 56 (1995) 1071—1075.

P. Vincenzini, Ceramurgia 3 (1974) 176—188.

I.N. Grubeša, M. Vračević , J. Ranogajec, S. Vučetić, Materials 13 (2020) 2364. https://doi.org/10.3390/ma13102364.

J.G. Ranogajec, S.L. Markov, O.Lj. Rudić, S.B. Vuĉetić, V.S. Ducman, Acta Period. Technol. 42 (1-288) (2011) 197—207. https://doi.org/10.2298/APT1142197R.

M.L. Coutinho, J.P. Veig, M.F. Macedo, A.Z. Miller, Coatings 10 (2020) 1169. https://doi.org/10.3390/coatings10121169.

W. Sand, Int. Biodeterior. 40 (1997) 183—190. https://doi.org/10.1016/S0964-8305(97)00048-6.

J. Ranogajec, M. Radeka, in Self-Cleaning Materials and Surfaces, W.A. Daoud Ed., Wiley Online Library, (2013) 89—128. https://doi.org/10.1002/9781118652336.ch4.

V. Jovanov, B. Anguseva, K. Pantovic, E. Fidancevska, “Ecological Truth” ECO-IST’15, XXIII International conference, Kopaonik, Serbia (2015) 207—211.

V. Ducman, A.S. Skapin, M. Radeka, J. Ranogajec, Ceram. Int. 37 (2011) 85—91. https://doi.org/10.1016/j.ceramint.2010.08.012.

M. Radeka, J. Ranogajec, J. Kiurski, S. Markov, R. Marinković-Nedučin, J. Eur. Ceram. Soc. 27 (2—3) (2007) 1763—1766. https://doi.org/10.1016/j.jeurceramsoc.2006.05.001.

T. Chand Dakal, S.S. Cameotra, Environ. Sci. Eur. 24 (2012) 1—13. https://doi.org/10.1186/2190-4715-24-36.

B. Angjusheva, E. Fidancevska,V. Jovanov, Chem. Ind. Chem. Eng. Q. 18 (2012) 245—254. https://doi.org/10.2298/CICEQ110607001A.

H.S. Kim, J.M. Kim. K. Ikeda, Br. Ceram. Trans. 102 (2003)133-137. https://doi.org/10.1179/096797803225001623.

M. Sveda, ZI, Ziegelind. Int. 55, (2002) 29—33.

M. Sveda, ZI, Ziegelind. Int. 57 (2004) 36—43.

T. Hulan, I. Stubna, J. Ondruska, A. Trnik, Minerals 10(10) (2020) 930. https://doi.org/10.3390/min10100930.

Most read articles by the same author(s)