ARTIFICIAL NEURAL NETWORK MODELING FOR DRYING KINETICS OF PADDY USING A CABINET TRAY DRYER

Scientific paper

Authors

  • Rajasekar Subramanyam Department of Chemical Engineering
  • Meyyappan Narayanan Department of Chemical Engineering, Sri Venkateswara College of Engineering, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ220106017S

Keywords:

Cabinet tray dryer, Equilibrium moisture content, Mathematical modeling, ANN modeling, Effective diffusivity, Activation energy

Abstract

The study of drying kinetics and characteristics of agricultural products is essential for drying time estimation, designing dryers, and optimizing the drying process. Moisture diffusivity under different drying conditions is crucial to process and equipment design. The drying kinetics of paddy using a cabinet tray dryer was modeled using an Artificial Neural Network (ANN) technique. For predicting moisture ratio and drying rate, the Levenberg-Marquardt (LM) training algorithm with TANSIGMOID and TANSIGMOID hidden layer activation function provided superior results. A comparative evaluation of the predicting abilities of ANN and 12 different mathematical drying models was also carried out. The Midilli model was adequate for fitting the experimental data with an R2 comparable to that of the ANN. However, the RMSE observed for ANN (0.0360) was significantly lower than that of the Midilli model (0.1673 to 0.712).  Effective moisture diffusivity increased with an increase in temperature from 15.05 10-9 m2/s to 28.5 10-9 m2/s. The activation energy for drying paddy grains varied between 6.8 kJ/mol to 7.3 kJ/mol, which showed a moderate energy requirement for moisture diffusion.

References

M.R. Manikantan, P. Barnwal, R.K. Goyal, J. Food Sci. Technol. 51 (2014) 813—819. https://doi.org/10.1007/s13197-013-1250-1.

S. Rajasekar, N. Meyyappan, D.G. Rao, ChemBioEng Rev. 4 (2017) 304—309. https://doi.org/10.1002/cben.201600018.

O. Yaldýz, C. Ertekýn, Drying Technol. 19 (2001) 583—597. https://doi.org/10.1081/DRT-100103936.

N. Norhadi, A.M. Akhir, N.R. Rosli, F. Mulana, Malaysian J. Chem.Eng. Technol. 3 (2020) 51—59. https://doi.org/10.24191/mjcet.v3i2.10965.

R. Winiczenko, K. Górnicki, A. Kaleta, M. Janaszek-Mańkowska, Neural Comput. Appl. 30 (2018) 1795—1809. https://doi.org/10.1007/s00521-016-2801-y.

V.K. Chasiotis, D.A. Tzempelikos, A.E. Filios, K.P. Moustris, Comput. Electron. Agric. 172 (2020). https://doi.org/10.1016/j.compag.2019.105074.

M. Golmohammadi, M. Foroughi-dahr, M. R. Hamaneh, A. Reza, S. Jalaledin, Iran. J. Chem. Chem. Eng. 35 (2016) 105—117. https://doi.org/10.30492/IJCCE.2016.22064.

S. Chakraborty, M. Sarma, J. Bora, S. Faisal, M.K. Hazarika, Agric. Eng. Int. 18 (2016) 177—189. https://cigrjournal.org/index.php/Ejounral/article/view/3645/2477.

A.D. Arjun, S. Ganapathy, T. Pandiarajan, K. Bhuvaneswari, M. Duraisamy, Int. J. Agric. Eng. 10 (2017) 623—630. https://doi.org/10.15740/HAS/IJAE/10.2/623-630.

M. Beigi, M. Torki-Harchegani, M. Mahmoodi-Eshkaftaki, Chem. Ind. Chem. Eng. Q. 23 (2017) 251—258. https://doi.org/10.2298/CICEQ160524039B.

J. Zhang, P. Ma, X. Zhang, B. Wang, J. Wu, X. Xing, J. Therm. Anal. Calorim. 134 (2018) 2359—2365. https://doi.org/10.1007/s10973-018-7716-7.

B. Pattanayak, S.S. Mohapatra, H.C. Das, Int. J. Postharvest Technol. Innov 6 (2019) 162—178. https://doi.org/10.1504/IJPTI.2019.106194.

E. Taghinezhad, A. Szumny, M. Kaveh, V.R. Sharabiani, A. Kumar, N. Shimizu, Foods 9 (2020) 1—17.

https://doi.org/10.3390/foods9010086.

A. Sitorus, Novrinaldi, S.A. Putra, I.S. Cebro, R. Bulan, Case Stud. Therm. Eng. 28 (2021) 1—9. https://doi.org/10.1016/j.csite.2021.101572.

S. Chakraborty, S.P. Gautam, M. Sarma, M.K. Hazarika, Food Sci. Technol. Int. 27 (2021) 746—763. https://doi.org/10.1177/1082013220983953.

M. Lutovska, V. Mitrevski, I. Pavkov, M. Babic, V. Mijakovski, T. Geramitcioski, Z. Stamenkovic, J. Process. Energy Agric. 21 (2017) 91—96. https://scindeks.ceon.rs/article.aspx?artid=1821-44871702091L.

D.G. Rao, B.S. Sridhar, G. Nanjundaiah, J. Food Eng. 17 (1992) 49—58. https://doi.org/10.1016/0260-8774(92)90064-D.

M. Ahmet Tütüncü, T.P. Labuza, J. Food Eng. 30 (1996) 433—447. https://doi.org/10.1016/S0260-8774(96)00028-3.

T. Gunhan, V. Demir, E. Hancioglu, A. Hepbasli, Energy Convers. Manage. 46 (2005) 1667—1679. https://doi.org/doi:10.1016/j.enconman.2004.10.001.

R.L. Sawhney, P.N. Sarsavadia, D.R. Pangavhane, S.P. Singh, Drying Technol. 17 (1999) 299—315. https://doi.org/10.1080/07373939908917531.

A. Tarafdar, N. Jothi, B.P. Kaur, J. Appl. Res. Med. Aromat. Plants 24 (2021) 1—8. https://doi.org/10.1016/j.jarmap.2021.100306.

G.O. Ondier, T.J. Siebenmorgen, R.C. Bautista, A. Mauromoustakos, Trans. ASABE. 50 (2011) 1007—1013. https://doi.org/10.13031/2013.37085.

J.O. Ojediran, A.O. Raji, Int. Food Res. J. 17 (2010) 1095—1106. http://www.ifrj.upm.edu.my/17%20(04)%202010/(30)%20IFRJ-2010-042%20Raji%20Nigeria[1].pdf.

V.C. Siqueira, R.A. Leite, G.A. Mabasso, E.A.S. Martins, W.D. Quequeto, E.P. Isquierdo, Cienc. Agrotecnol. 44 (2020) 1—10. https://doi.org/10.1590/1413-7054202044011320.

S. Rafiee, A. Keyhani, A. Jafari, Int. J. Food Prop. 11 (2008) 223—232. https://doi.org/10.1080/10942910701291858.

B.H. Hassan, A.I. Hobani, J. Food Process Eng. 23 (2000) 177—189. https://doi.org/10.1111/j.1745-4530.2000.tb00510.x.

I.L. Pardeshi, S. Arora, P.A. Borker, Drying Technol. 27 (2009) 288—295. https://doi.org/10.1080/07373930802606451.

N.A. Akgun, I. Doymaz, J. Food Eng. 68 (2005) 455—461. https://doi.org/10.1016/j.jfoodeng.2004.06.023.

Xiao-Kang Yi, Wen-Fu Wu, Ya-Qiu Zhang, Jun-Xing Li, Hua-Ping Luo, Math. Probl. Eng. (2012) 1—19. https://doi.org/10.1155/2012/386214.

Y.G. Keneni, A.K. (Trine) Hvoslef-Eide, J.M. Marchetti , Ind. Crops Prod. 132 (2019) 12—20. https://doi.org/10.1016/j.indcrop.2019.02.012.

Qing-An Zhang, Yun Song, Xi Wang, Wu-Qi Zhao, Xue-Hui Fan, CYTA J. Food 14 (2016) 509—517. https://doi.org/10.1080/19476337.2015.1136843.

S. Soodmand-Moghaddam, M. Sharifi, H. Zareiforoush, H. Mobli, Qual. Assur. Saf. Crop.12 (2020) 57—66. https://doi.org/10.15586/QAS2019.658.

P. Thant, P. Robi, P. Mahanta, Int. J. Eng. Appl. Sci. 5 (2018) 118—123. https://www.ijeas.org/download_data/IJEAS0503034.pdf.

A. Sitorus, Novrinaldi, S.A. Putra, I.S. Cebro, R. Bulan, Case Stud. Therm. Eng. 28 (2021). https://doi.org/10.1016/j.csite.2021.101572.

S. Kono, I. Kawamura, T. Araki, Y. Sagara, Int. J. Refrig. 65 (2016) 218—227. https://doi.org/10.1016/j.ijrefrig.2015.10.009.

B. Osodo, D. Nyaanga, J. Kiplagat, J. Muguthu, Am. J. Food Technol. 6 (2018) 263—271. http://pubs.sciepub.com/ajfst/6/6/6/.

M. Kashiri, A.D. Garmakhany, A.A. Dehghani, Qual. Assur. Saf. Crop. Foods 4 (2012) 179—184. https://doi.org/10.1111/j.1757-837X.2012.00184.x.

I. Golpour, R. Amiri Chayjan, J. Amiri Parian, J. Khazaei, J. Agric. Sci. Technol. 17 (2015) 287—298. https://jast.modares.ac.ir/article-23-10165-en.pdf.

U. Şahin, H.K. Öztürk, J. Food Process Eng. 41 (2018) 1—14. https://doi.org/10.1111/jfpe.12804.

J.W. Bai, H.W. Xiao, H. L. Ma, C.S. Zhou, J. Food Qual. (2018) 1—9. https://doi.org/10.1155/2018/3278595.

M. Garg, S. Sharma, S. Varmani, S. Sadhu, Int. J. Food Sci. Nutr. 3 (2014) 61—66. https://www.researchgate.net/publication/341440997_DRYING_KINETICS_OF_THIN_LAYER_PEA_PODS_USING_TRAY_DRYING#fullTextFileContent.

A. Motevali, S. Younji, R.A. Chayjan, N. Aghilinategh, A. Banakar, Int. Agrophys. 27 (2013) 39—47. https://doi.org/10.2478/v10247-012-0066-y.

A. Fernandez, C. Román, G. Mazza, R. Rodriguez, Case Stud. Therm. Eng. 12(2018) 248—257. https://doi.org/10.1016/j.csite.2018.04.015.

Graphical Abstract

Downloads

Published

26.07.2022 — Updated on 20.01.2023

Issue

Section

Articles

How to Cite

ARTIFICIAL NEURAL NETWORK MODELING FOR DRYING KINETICS OF PADDY USING A CABINET TRAY DRYER: Scientific paper. (2023). Chemical Industry & Chemical Engineering Quarterly, 29(2), 87-98. https://doi.org/10.2298/CICEQ220106017S

Similar Articles

31-40 of 92

You may also start an advanced similarity search for this article.